Leaded brass alloys used progressively in many applications such as gas valves production owing to their excellent machinability, corrosion resistance and some other specifications. However, the production processes o...Leaded brass alloys used progressively in many applications such as gas valves production owing to their excellent machinability, corrosion resistance and some other specifications. However, the production processes of these alloys involve some problems appearing in the last activities of production as a result of cumulative defects of previous production processes. Therefore, the current investigation studies the effect of process parameters during casting, hot extrusion and cold drawing production stages of CuZn40Pb2 leaded brass alloy on the mechanical properties. Starting with casting process, two types of charges were used. The first charge consists of 100% recycles while the second contains 30% of pure materials such as Cu, Zn and Pb in addition to the recycles. For each production stage, alloy hardness, micro-hardness, ultimate tensile strength and elongation were examined. The results illustrated that high hardness values are obtained during casting process due to some impurities such as iron and the effect of cooling rate through solidification. The hardness values decrease during extrusion process and then rise again by cold drawing for the charge of 30% pure materials. Micro-hardness values for the fractured tensile test samples appeared higher than others due to work hardening effect. The best mechanical properties as ultimate tensile strength of CuZn40Pb2 alloy products are appeared into cold forming samples with the 30% pure material added.展开更多
The effect of the rare earths on the high temperature properties of deformed leaded-brasses has been stu- died with the high temperature tensile test.The results show that the rare earth additives can increase elongat...The effect of the rare earths on the high temperature properties of deformed leaded-brasses has been stu- died with the high temperature tensile test.The results show that the rare earth additives can increase elongation of alloys at high temperature,but they had little effect on the maximum flow stress.With the help of SEM. X-ray diffraction instrument,quantitative metallography analysis instrument,etc.,the effect of the rare earth elements on the mierostrueture of alloys has also been examined.展开更多
A new environmental friend cutting brass containing magnesium instead of lead was produced by casting, extruding and drawing. Its microstructure was observed and its mechanical, chemical and cutting properties were st...A new environmental friend cutting brass containing magnesium instead of lead was produced by casting, extruding and drawing. Its microstructure was observed and its mechanical, chemical and cutting properties were stutied. The results show that the global secondary particles which are brittle and soft intermetallics, distribute in grains and on grain boundries, which is helpful for improvement of cutting ability of the brass. The tensile strength, yield strength, elongation and area reduction of halfhard magnesium-brass are (550MPa,) (280MPa,) (16.30%,) (32.4%,) respectively. The cutting ability of magnesium-brass corresponds to that of lead-brass C3604 judged by the size and appearance of chips of alloy and by the cutting force. The magnesium-brass has excellent corrosion resistance.展开更多
Deformed high lead-brasses have excellent machining characteristics and good mechanical and physicalproperties.They are widely used in mechanical,clock-watch and pen-making field.Especially,they are suit-able for deep...Deformed high lead-brasses have excellent machining characteristics and good mechanical and physicalproperties.They are widely used in mechanical,clock-watch and pen-making field.Especially,they are suit-able for deep-hole machining.Because of their worse hot-working characteristics,there exists trouble inproduction process.It is reported that the rare earth metals could improve the hot-rolling property,but themechanism is still unclear.展开更多
2 wt% Ca was added to molten brass containing 3.2 wt% Pb. The composition and grain size of the formed Ca-Pb compound were examined in detail using SEM-EDS and XRD. This revealed that the composition of the Ca-Pb comp...2 wt% Ca was added to molten brass containing 3.2 wt% Pb. The composition and grain size of the formed Ca-Pb compound were examined in detail using SEM-EDS and XRD. This revealed that the composition of the Ca-Pb compound depends on the grain size of the liquid phase Pb and the diffusion phenomenon of the Ca in the Ca-Pb compound formed on the surface of the Pb. When the Pb has a fine grain, a compound composed only of Ca-Pb compounds is formed. When the grain size of the Pb is several μm, Ca-Pb compounds containing unreacted Pb in the center are formed. These compounds aggregate into a larger compound grain. From the evaluation of the floating force (the resultant force of the weight and buoyancy of the Ca-Pb compounds formed) and the rising terminal velocity of the Ca-Pb compound within the molten brass, it was found that the floating force and rising terminal velocity depend on the composition and grain size of the Ca-Pb compound. It was found that since Ca-Pb compounds with a floating force greater than 10-6 g ·cm/s2 have a very large rising terminal velocity, they reach the surface of the molten brass in a short time after compound formation and then continue to float on the surface of the molten brass. Thus they can be removed by skimming. The effects of the grain size of the Ca-Pb compound on the floating force and the rising terminal velocity were greater than those of the composition of the Ca-Pb compound.展开更多
The Mechanism of Pb removal from brass scrap by compound separation using Ca and NaF addition was investigated. Because large Ca-Pb compound particles formed by Ca addition rise to the surface of the molten brass, the...The Mechanism of Pb removal from brass scrap by compound separation using Ca and NaF addition was investigated. Because large Ca-Pb compound particles formed by Ca addition rise to the surface of the molten brass, they can be skimmed off from the molten brass. However, fine Ca-Pb compound particles remain in the molten brass because of low buoyancy. By subsequent NaF addition, the reaction between Ca-Pb compound and NaF takes place at their contact regions, resulting in the formation of solid CaF2, liquid Pb and Na gas. Pb is mainly present at the Ca-Pb compound-CaF2 interface. CaF2 acts as a binder for aggregation of fine Ca-Pb compound particles, resulting in the formation of light and large composite compounds, which rise to the surface of the molten brass. A high Pb removal rate is achieved by skimming off.展开更多
文摘Leaded brass alloys used progressively in many applications such as gas valves production owing to their excellent machinability, corrosion resistance and some other specifications. However, the production processes of these alloys involve some problems appearing in the last activities of production as a result of cumulative defects of previous production processes. Therefore, the current investigation studies the effect of process parameters during casting, hot extrusion and cold drawing production stages of CuZn40Pb2 leaded brass alloy on the mechanical properties. Starting with casting process, two types of charges were used. The first charge consists of 100% recycles while the second contains 30% of pure materials such as Cu, Zn and Pb in addition to the recycles. For each production stage, alloy hardness, micro-hardness, ultimate tensile strength and elongation were examined. The results illustrated that high hardness values are obtained during casting process due to some impurities such as iron and the effect of cooling rate through solidification. The hardness values decrease during extrusion process and then rise again by cold drawing for the charge of 30% pure materials. Micro-hardness values for the fractured tensile test samples appeared higher than others due to work hardening effect. The best mechanical properties as ultimate tensile strength of CuZn40Pb2 alloy products are appeared into cold forming samples with the 30% pure material added.
文摘The effect of the rare earths on the high temperature properties of deformed leaded-brasses has been stu- died with the high temperature tensile test.The results show that the rare earth additives can increase elongation of alloys at high temperature,but they had little effect on the maximum flow stress.With the help of SEM. X-ray diffraction instrument,quantitative metallography analysis instrument,etc.,the effect of the rare earth elements on the mierostrueture of alloys has also been examined.
文摘A new environmental friend cutting brass containing magnesium instead of lead was produced by casting, extruding and drawing. Its microstructure was observed and its mechanical, chemical and cutting properties were stutied. The results show that the global secondary particles which are brittle and soft intermetallics, distribute in grains and on grain boundries, which is helpful for improvement of cutting ability of the brass. The tensile strength, yield strength, elongation and area reduction of halfhard magnesium-brass are (550MPa,) (280MPa,) (16.30%,) (32.4%,) respectively. The cutting ability of magnesium-brass corresponds to that of lead-brass C3604 judged by the size and appearance of chips of alloy and by the cutting force. The magnesium-brass has excellent corrosion resistance.
文摘Deformed high lead-brasses have excellent machining characteristics and good mechanical and physicalproperties.They are widely used in mechanical,clock-watch and pen-making field.Especially,they are suit-able for deep-hole machining.Because of their worse hot-working characteristics,there exists trouble inproduction process.It is reported that the rare earth metals could improve the hot-rolling property,but themechanism is still unclear.
文摘2 wt% Ca was added to molten brass containing 3.2 wt% Pb. The composition and grain size of the formed Ca-Pb compound were examined in detail using SEM-EDS and XRD. This revealed that the composition of the Ca-Pb compound depends on the grain size of the liquid phase Pb and the diffusion phenomenon of the Ca in the Ca-Pb compound formed on the surface of the Pb. When the Pb has a fine grain, a compound composed only of Ca-Pb compounds is formed. When the grain size of the Pb is several μm, Ca-Pb compounds containing unreacted Pb in the center are formed. These compounds aggregate into a larger compound grain. From the evaluation of the floating force (the resultant force of the weight and buoyancy of the Ca-Pb compounds formed) and the rising terminal velocity of the Ca-Pb compound within the molten brass, it was found that the floating force and rising terminal velocity depend on the composition and grain size of the Ca-Pb compound. It was found that since Ca-Pb compounds with a floating force greater than 10-6 g ·cm/s2 have a very large rising terminal velocity, they reach the surface of the molten brass in a short time after compound formation and then continue to float on the surface of the molten brass. Thus they can be removed by skimming. The effects of the grain size of the Ca-Pb compound on the floating force and the rising terminal velocity were greater than those of the composition of the Ca-Pb compound.
文摘The Mechanism of Pb removal from brass scrap by compound separation using Ca and NaF addition was investigated. Because large Ca-Pb compound particles formed by Ca addition rise to the surface of the molten brass, they can be skimmed off from the molten brass. However, fine Ca-Pb compound particles remain in the molten brass because of low buoyancy. By subsequent NaF addition, the reaction between Ca-Pb compound and NaF takes place at their contact regions, resulting in the formation of solid CaF2, liquid Pb and Na gas. Pb is mainly present at the Ca-Pb compound-CaF2 interface. CaF2 acts as a binder for aggregation of fine Ca-Pb compound particles, resulting in the formation of light and large composite compounds, which rise to the surface of the molten brass. A high Pb removal rate is achieved by skimming off.