The as-cast microstructures and mechanical properties of Mg?4Zn?xY?1Ca (x=1.0, 1.5, 2.0 and 3.0, mass fraction, %) alloys were investigated and compared. The results indicate that all the as-cast alloys are mainly com...The as-cast microstructures and mechanical properties of Mg?4Zn?xY?1Ca (x=1.0, 1.5, 2.0 and 3.0, mass fraction, %) alloys were investigated and compared. The results indicate that all the as-cast alloys are mainly composed ofα-Mg, Mg2Ca, Ca2Mg6Zn3,I (Mg3YZn6) andW (Mg3Y2Zn3) phases. However, with Y content increasing from 0.86% to 2.68%, the amount of the Ca2Mg6Zn3 phase gradually decreases but that of theI (Mg3YZn6) andW (Mg3Y2Zn3) phases gradually increases. Furthermore, an increase in Y content from 0.86% to 2.68% also causes the grain size of the as-cast alloys to gradually decrease. In addition, the tensile and creep properties of the as-cast alloys vary with Y content. Namely, with Y content increasing from 0.86% to 2.68%, the creep properties gradually increase, whereas the tensile properties firstly increase and attain the maximum at 1.77% Y, beyond that they decrease. Amongst the as-cast alloys with 0.86% Y, 1.19% Y, 1.77% Y and 2.68% Y, the alloy with 1.77% Y exhibits the relatively optimal tensile and creep properties.展开更多
In this work two new alloys were obtained by extrapolation from a well-known high entropy alloy,the equimolar CoNiFeMnCr one.This was done by the addition of carbon and of tantalum,Ta being one of the strongest MC-for...In this work two new alloys were obtained by extrapolation from a well-known high entropy alloy,the equimolar CoNiFeMnCr one.This was done by the addition of carbon and of tantalum,Ta being one of the strongest MC-former elements.They were produced by conventional casting under inert atmosphere.The obtained microstructures were characterized by X-ray diffraction,metallography,electron microscopy,and energy dispersion spectrometry.Their hardness was also measured by hardness indentation.In parallel,the original CoNiFeMnCr alloy was also synthesized and characterized for comparison.The reference HEA alloy is single-phased with an austenitic structure,while the two{Ta,C}-added alloys are double-phased,with an austenitic matrix and interdendritic script-like TaC carbides.The matrixes of these HEA/TaC alloy are equivalent to an equimolar CoNiFeMnCr alloy to which 2 wt.%Ta is present in solid solution.The presence of the TaC carbides caused a significant increase in hardness which suggests that the HEA/TaC alloys may be mechanically stronger than the HEA reference alloy at high temperature.展开更多
A new method (liquidus casting) was used for 356 Al alloy semi-solid slurry making. The structures of 356 Al alloy cast by a Fe mould and semi-continuous casting machine at different temperatures were investigated. Ho...A new method (liquidus casting) was used for 356 Al alloy semi-solid slurry making. The structures of 356 Al alloy cast by a Fe mould and semi-continuous casting machine at different temperatures were investigated. How the globular grains form was also discussed. The results show that either being cast by single Fe mould or semi-continuous machine, the micro structures are not conventional dendrites but fine and net-globular grains. The average gram size is smaller than 30μm and suitable enough for thixoforming, meanwhile it can improve the mechanical properties of following products. Under the suitable casting velocity and cooling intensity, most of global grains prolong their global growth and collide with each other before dendritic growth because of the large amount of the nucleation sites.展开更多
Abstract The as-cast microstructures and solidification paths of the Nb-Si-Ti ternary alloys in the NbsSi3-TisSi3 region were investigated. Since there exist some isomor- phous compounds in the NbsSi3-TisSi3 region, s...Abstract The as-cast microstructures and solidification paths of the Nb-Si-Ti ternary alloys in the NbsSi3-TisSi3 region were investigated. Since there exist some isomor- phous compounds in the NbsSi3-TisSi3 region, such as aNbsSi3 with B3Cr5 prototype, 13NbsSi3 with Si3W5 pro- totype, 7NbsSi3 with MnsSi3 prototype, and TisSi3 with MnsSi3 prototype, the primary solidification areas of these compounds were not typically indentified in previous experiments. In the present paper, the microstructure observation, the phase identification, and the composition measurement were performed using scanning electron microscopy (SEM), X-ray diffraction (XRD), and electron probe microanalysis (EPMA), respectively. No ternary compound is found. There exist three primary solidification areas, 13Nbs_x(Ti)xSi3, ~Nbs_x(Ti)xSi3, and Tis-x(Nb)xSi3 in the NbsSi3-TisSi3 region. Together with the literaturereported experimental data and optimization results, the liquidus projection of the whole Nb-Si-Ti ternary system is constructed, and totally ten primary solidification areas-- diamond-Si, Nb1-x(Ti)xSi2, Ti1-x(Nb)xSi2, Ti1-x(Nb)xSi, Ti5-x(Nb)xSi4, βNb5-x(Ti)xSi3,αNb5-x(Ti)xSi3, Ti5-x (Nb)xSi3, (Nb,Ti)3Si, and BCC--and nine transitional invariant reactions-L + Nb1-x(Ti)xSi2 → Ti1-x(Nb)x Si2 + Si, L + Nb1-x(Ti)xSi2 → Ti1-x(Nb)xSi2 + Ti5- (Nb)xSi4, L + Ti5-x(Nb)xSi4 → Ti1-x(Nb)xSi2 + Ti1-x (Nb)xSi, L + 13Nb5-x(Ti)5Si3→ Nb1-x(Ti)xSi2 + Ti5-x (Nb)xSi4, L + βNb5-x(Ti)xSi3→b5-x(Ti)xSi3 +Ti5-x (Nb)xSi4, L + αNb5-x(Ti)αSi3 → Ti5-x(Nb)xSi3 + Ti5-x(Nb)x Si4, L + αNb5-x(Ti)xSi3 →βNb5-x(Ti)xSi3 + Ti5-x(Nb)xSi3, L + βNb5-xTb-xSi3 → Ti5-x(Nb)xSi3 + (Nb,Ti)3Si, and L + (Nb,Ti)3Si → Ti5-x(Nb)xSi3 + BCC are confirmed.展开更多
The effects of cooling rates corresponding to different diameters of the steel mould and laser surface melting(LSM)on the as-cast microstructures of Mg-9Al-xSi(x=1,3)(mass fraction,%)alloys were investigated by XRD an...The effects of cooling rates corresponding to different diameters of the steel mould and laser surface melting(LSM)on the as-cast microstructures of Mg-9Al-xSi(x=1,3)(mass fraction,%)alloys were investigated by XRD and OM.The results show that obvious refinement of the alloy microstructure is obtained with increasing cooling rate by conventional ingot metallurgy.However, no evident modified morphologies of both dendritic primary Mg2Si and Chinese script eutectic Mg2Si in the Mg-Al-Si alloy occurs. Surprisingly,the morphologies of Mg2Si phases within the laser-melted Mg-Al-Si alloy transform drastically from both coarse Chinese script shape for the eutectic Mg2Si and dendrite for the primary Mg2Si to fine spherical particles with an average size of about 3μm due to the rapid cooling of the melted layer,and the Mg2Si particulates distribute more uniformly in theα-Mg matrix.展开更多
Al-Zn-Mg-Cu-Zr ingots with diameter of 200 mm were made by low frequency electromagnetic casting (LFEC) and conventional direct chill (DC) casting process. The results show that under the low frequency electromagnetic...Al-Zn-Mg-Cu-Zr ingots with diameter of 200 mm were made by low frequency electromagnetic casting (LFEC) and conventional direct chill (DC) casting process. The results show that under the low frequency electromagnetic field (25 Hz, 32 mT) the microstructures of LFEC ingot from the border to the center on the cross section are all equiaxed grains, and the grains are much finer and more uniform than that of DC ingot. The magnetic flux density plays an important role in the microstructure formation of LFEC ingots. With increasing the magnetic flux density from 0 mT to 32 mT, grains become finer (from about 120 urn to 30 urn) and more uniform. While, with increasing the magnetic flux density from 32 mT to 46 mT, the grains change much slowly. In the range of experimental parameters, the optimum magnetic flux density for LFEC process is found to be 32 mT.展开更多
Mg-6Zn-2X(Fe/Cu/Ni)alloys were prepared through semi-continuous casting,with the aim of identifying a degradable magnesium(Mg)alloy suitable for use in fracturing balls.A comparative analysis was conducted to assess t...Mg-6Zn-2X(Fe/Cu/Ni)alloys were prepared through semi-continuous casting,with the aim of identifying a degradable magnesium(Mg)alloy suitable for use in fracturing balls.A comparative analysis was conducted to assess the impacts of adding Cu and Ni,which result in finer grains and the formation of galvanic corrosion sites.Scanner electronic microscopy examination revealed that precipitated phases concentrated at grain boundaries,forming a semi-continuous network structure that facilitated corrosion penetration in Mg-6Zn-2Cu and Mg-6Zn-2Ni alloys.Pitting corrosion was observed in Mg-6Zn-2Fe,while galvanic corrosion was identified as the primary mechanism in Mg-6Zn-2Cu and Mg-6Zn-2Ni alloys.Among the tests,the Mg-6Zn-2Ni alloy exhibited the highest corrosion rate(approximately 932.9 mm/a)due to its significant potential difference.Mechanical testing showed that Mg-6Zn-2Ni alloy possessed suitable ultimate compressive strength,making it a potential candidate material for degradable fracturing balls,effectively addressing the challenges of balancing strength and degradation rate in fracturing applications.展开更多
Long period stacking ordered(LPSO) structure phases were prepared by conventional solidification method in Mg(94)Zn3YxGd(3-x)(x=3,2,1.5,1,mole fraction) alloys,the microstructures,corrosion and compressive mec...Long period stacking ordered(LPSO) structure phases were prepared by conventional solidification method in Mg(94)Zn3YxGd(3-x)(x=3,2,1.5,1,mole fraction) alloys,the microstructures,corrosion and compressive mechanical properties of which were investigated,separately.The results reveal that the microstructures of the as-cast Mg(94)Zn3YxGd(3-x) alloys,with n(Zn)/n(Y+Gd)=1:1,consist of α(Mg) phase,Mg3Zn3RE2(W) phase,Mg(12)ZnRE(14H-LPSO) phase and a few bright cube-shaped Mg-Y-Gd phases.The formation and the distribution of LPSO-phase in the alloys can be influenced by the content of Gd.The volume fraction of 14H-LPSO phase increases first and then decreases with the increase of the Gd content.For the electrochemical impedance spectroscopy(EIS) measurement,a R(Q(R(QR))) model was used to fit the test results in 3.5%(mass fraction) NaCl solution at room temperature.The corrosion current densities of all samples are about 10-(-5) A/cm-2.When x(Gd)≤1%,Mg-Zn-Y-(Gd)alloy shows good corrosion resistance,which is better than that of the commercial AZ91 D magnesium alloy.The corrosion rate increases when the Gd content is higher than 1.5%.At room temperature,the compressive properties of Mg-Zn-Y-(Gd) alloys increase remarkably with the increase of the volume fraction of LPSO phase.In addition,the pinning effect of W-phase and dispersive cube-shaped Mg-Y-Gd phase is beneficial to improving the mechanical properties of as-cast Mg(94)Zn3YxGd(3-x) alloy in deformation process.展开更多
High-entropy alloys(HEAs),which were introduced as a pioneering concept in 2004,have captured the keen interest of nu-merous researchers.Entropy,in this context,can be perceived as representing disorder and randomness...High-entropy alloys(HEAs),which were introduced as a pioneering concept in 2004,have captured the keen interest of nu-merous researchers.Entropy,in this context,can be perceived as representing disorder and randomness.By contrast,elemental composi-tions within alloy systems occupy specific structural sites in space,a concept referred to as structure.In accordance with Shannon entropy,structure is analogous to information.Generally,the arrangement of atoms within a material,termed its structure,plays a pivotal role in dictating its properties.In addition to expanding the array of options for alloy composites,HEAs afford ample opportunities for diverse structural designs.The profound influence of distinct structural features on the exceptional behaviors of alloys is underscored by numer-ous examples.These features include remarkably high fracture strength with excellent ductility,antiballistic capability,exceptional radi-ation resistance,and corrosion resistance.In this paper,we delve into various unique material structures and properties while elucidating the intricate relationship between structure and performance.展开更多
As-east mierostruetures and their distribution of Mg-Zn-Y ternary alloy with high magnesium, low zinc and yttrium were examined using Nikon Epiphot optical microscopy (OM), RigakuD/max-3C X- ray diffraetion (XRD),...As-east mierostruetures and their distribution of Mg-Zn-Y ternary alloy with high magnesium, low zinc and yttrium were examined using Nikon Epiphot optical microscopy (OM), RigakuD/max-3C X- ray diffraetion (XRD), and JEOL JSM-6700F scanning electron microscopy (SEM) equipped with an energydispersive X-ray spectroscopy (EDS). In the as-east mierostructures, Yttrium and zinc tend to segregate at grain boundaries,展开更多
High-entropy alloys(HEAs)possess outstanding features such as corrosion resistance,irradiation resistance,and good mechan-ical properties.A few HEAs have found applications in the fields of aerospace and defense.Exten...High-entropy alloys(HEAs)possess outstanding features such as corrosion resistance,irradiation resistance,and good mechan-ical properties.A few HEAs have found applications in the fields of aerospace and defense.Extensive studies on the deformation mech-anisms of HEAs can guide microstructure control and toughness design,which is vital for understanding and studying state-of-the-art structural materials.Synchrotron X-ray and neutron diffraction are necessary techniques for materials science research,especially for in situ coupling of physical/chemical fields and for resolving macro/microcrystallographic information on materials.Recently,several re-searchers have applied synchrotron X-ray and neutron diffraction methods to study the deformation mechanisms,phase transformations,stress behaviors,and in situ processes of HEAs,such as variable-temperature,high-pressure,and hydrogenation processes.In this review,the principles and development of synchrotron X-ray and neutron diffraction are presented,and their applications in the deformation mechanisms of HEAs are discussed.The factors that influence the deformation mechanisms of HEAs are also outlined.This review fo-cuses on the microstructures and micromechanical behaviors during tension/compression or creep/fatigue deformation and the application of synchrotron X-ray and neutron diffraction methods to the characterization of dislocations,stacking faults,twins,phases,and intergrain/interphase stress changes.Perspectives on future developments of synchrotron X-ray and neutron diffraction and on research directions on the deformation mechanisms of novel metals are discussed.展开更多
The effects of Y addition amount on the microstructures and mechanical properties of as-cast MgZn-Nd alloy have been investigated by using an optical microscope, a scanning electron microscope, backscattered electroni...The effects of Y addition amount on the microstructures and mechanical properties of as-cast MgZn-Nd alloy have been investigated by using an optical microscope, a scanning electron microscope, backscattered electronic imaging technique, an X-ray diffractometer, a differential thermal analyzer and a universal testing machine. There are three kinds of ternary phases in the Mg-Zn-Y system alloys, such as I phase(Mg3Zn6Y), W phase(Mg3Zn3Y2) and Z or X phase(Mg12Zn Y). The experimental results in the present study indicate that the Mg-Zn-RE(RE includes Y and Nd) ternary phases change from the I + W phases in turn to unique W, W + Z and unique Z as the Y content increases from 0% to 3%. Simultaneously, their distribution gradually changes from small particle-like form to continuous network form. The grain size first decreases as the Y content increases from 0% to 1% Y, then increases when the Y content exceeds 1% and finally decreases again when the content exceeds 3% due to the variation of growth restriction factor caused by the increased Y element and the change of the ternary phases. The hardness continuously increases because of the increased ternary phase amount. The ultimate tensile strength and elongation first increase within the range of 0-1% Y, also due to the increased ternary phase amount and grain refinement, and then decreases because of the grain coarsening, porosity formation and continuous network distribution of the ternary phases. The grain bonding strength of the W phase-containing alloys is quite strong and the W phase is an ideal strengthening phase if a given amount of it distributes in discontinuous and small-sized form. The alloy with 1% Y only has one ternary phase of W, but has the best combination of mechanical properties. The fracture regimes of these alloys always present a transgranular mode.展开更多
The effect of heat treatment on the microstructure evolution of a high Nb containing TiAl alloy has been studied. The results indicate that β-segregation, β-segregation and S-segregation in the as-cast and as-forged...The effect of heat treatment on the microstructure evolution of a high Nb containing TiAl alloy has been studied. The results indicate that β-segregation, β-segregation and S-segregation in the as-cast and as-forged alloys can be effectively eliminated at the temperature above Tα (1350-1400℃) for long holding time (12-24 h) and the full lamellar (FL) microstructure is gained. For the two alloys, the lamellar colony sizes are 120 μm and 2000 μm, respectively after heat treatment at 1400℃ for 12 h. Meanwhile, the sizes are 210 μm and 3000 μm, respectively at 1350℃ for 24 h. To get a fine homogenous microstructure, the primary as-cast alloy is first subjected to preheat treatment for eliminating the segregations. After the preheat treatment, the ailoy is processed by the multi-step canned forging to attain the microstructure with fine grain size.展开更多
The A356 castings were fabricated using a well-developed temperature controlled permanent mold.To improve the strength and hardness of cast A356,the microstructures and mechanical properties of as-cast and T6 heat tre...The A356 castings were fabricated using a well-developed temperature controlled permanent mold.To improve the strength and hardness of cast A356,the microstructures and mechanical properties of as-cast and T6 heat treated A356 alloy with various mold and pouring temperatures were studied.The results reveal that the undercooling is closely related to the mold and pouring temperatures.As the mold/pouring temperature changed from 258°C/680°C and 270°C/680°C to 288°C/650°C,the in-situ undercooling is 12°C,17°C and 11°C,respectively.It is observed that the Si phase changes from long continuous flake to discontinuous globular-fibrous morphology after T6 heat treatment as the mold and pouring temperature is 270°C/680°C,and the T6 heat treated specimens exhibit better mechanical properties in comparison to those as-cast ones with an increase of 162%and 102%in yield strength and elongation,which are 34.6%and 190%higher than the ASTM B108-03 a standard,respectively.As a result,the tensile fracture morphology of the as-cast A356 alloy shows quasi-cleavage fracture and the T6 heat treated A356 alloy shows ductile fracture.展开更多
The influences of the low frequency electromagnetic field on the horizontal direct chill casting process were investigated experimentally. Ingots of 2024 aluminum alloy with a cross size of 40 mm× 200 mm were pro...The influences of the low frequency electromagnetic field on the horizontal direct chill casting process were investigated experimentally. Ingots of 2024 aluminum alloy with a cross size of 40 mm× 200 mm were produced by the conventional horizontal chill casting process and low frequency electromagnetic horizontal chill casting processre- spectively. The as-cast structures and the mechanical property of the ingots were examined. The results showed that the low frequency electromagnetic field could sub- stantially refine the microstructures and pronouncedly reduce the macrosegregation in the horizontal direct chill casting process. Moreover, the surface quality of the ingot was prominently improved by the low frequency electromagnetic field. The fracture strength and elongation percentage of the ingot was increased with the low frequency electromagnetic field.展开更多
Mg-20Gd( %, mass fraction)samples were prepared using melt-spinning and copper mold casting techniques. Microstructures and properties of the Mg-20Gd were investigated. Results show that the melt-spun ribbon is main...Mg-20Gd( %, mass fraction)samples were prepared using melt-spinning and copper mold casting techniques. Microstructures and properties of the Mg-20Gd were investigated. Results show that the melt-spun ribbon is mainly composed of supersaturated a-Mg solid solution phase and the as-cast ingot mainly contains a-Mg solid solution and MgsGd phase. The differential scanning calorimeter (DSC) curve of the ribbon exhibits a small exothermic peak in the temperature range from 630 to 680 K, which indicates that the ribbon contains a metastable phase (amorphous). Tensile strength at room temperature of the melt-spun ribbon and as-cast specimen are 308 and 254 MPa, respectively. The elongations of the two samples are less than 2 %. The fracture surfaces demonstrate that the fracture mode of the as-cast Mg-20Gd is a typical cleavage fracture and that of the melt-spun sample is a combination of brittle fracture and ductile fracture.展开更多
High coercivity was obtained in bulk RE(Dy) Fe C(B) alloys with RE=Nd, Pr and Mm. In the as cast state, the samples show a negligible coercivity H ci . Magnetic hardening takes place when annealing the as ...High coercivity was obtained in bulk RE(Dy) Fe C(B) alloys with RE=Nd, Pr and Mm. In the as cast state, the samples show a negligible coercivity H ci . Magnetic hardening takes place when annealing the as cast alloys at around 1173 K for several hours, which produces an H ci greater than 1200 kA·m -1 . Boron appears to be very important for achieving high coercivity, which is found to increase with increasing Dy content. SEM studies show a very small grain size at around 2 μm. X ray diffraction and TEM studies reveal the existence of multiphases after annealing. They are RE 2Fe 14 (B,C), RE 2Fe 3C x , alpha Fe(RE) and RE 2Fe 17 (B,C) in order of their amounts. The carbide RE 2Fe 3C x has a complicated hexagonal structure with a =0.468 nm and c =0.795 nm.展开更多
Microstructures determine mechanical properties of steels,but in actual steel product process it is difficult to accurately control the microstructure to meet the requirements.General microstructure characterization m...Microstructures determine mechanical properties of steels,but in actual steel product process it is difficult to accurately control the microstructure to meet the requirements.General microstructure characterization methods are time consuming and results are not rep-resentative for overall quality level as only a fraction of steel sample was selected to be examined.In this paper,a macro and micro coupled 3D model was developed for nondestructively characterization of steel microstructures.For electromagnetic signals analysis,the relative permeability value computed by the micro cellular model can be used in the macro electromagnetic sensor model.The effects of different microstructure components on the relative permeability of duplex stainless steel(grain size,phase fraction,and phase distribu-tion)were discussed.The output inductance of an electromagnetic sensor was determined by relative permeability values and can be val-idated experimentally.The findings indicate that the inductance value of an electromagnetic sensor at low frequency can distinguish dif-ferent microstructures.This method can be applied to real-time on-line characterize steel microstructures in process of steel rolling.展开更多
Advanced high-strength steel ingots with total lanthanum(TLa)contents of 0,15×10^(–6),86×10^(–6)and 360×10^(–6)were prepared through laboratory experiments.The modification of inclusions and the vari...Advanced high-strength steel ingots with total lanthanum(TLa)contents of 0,15×10^(–6),86×10^(–6)and 360×10^(–6)were prepared through laboratory experiments.The modification of inclusions and the variation of the as-cast microstructure with the content of lanthanum in the high-strength steel were analyzed.The result showed that with the increase in the TLa content in the steel from 0 to 360×10^(–6),the modification path of inclusions in the as-cast steel was Al2O_(3)and calcium aluminate→LaAlO_(3)→La_(2)O_(2)S→La_(2)O_(2)S–La2O_(3).The addition of La in the high-strength steel significantly refined the solidification structures.With the increase in the TLa content in the steel from 0 to 360×10^(–6),the ratio of the equiaxed crystal region in the macrostructure increased from 30.1%to 50.7%,the proportion of the high-angle grain boundary in the microstructure increased from 36.9%to 69.8%,and the area fraction of the acicular ferrite and the bainite increased from 0 to 93.3%.Inclusions of LaAlO_(3),La_(2)O_(2)S and La2O_(3)in the La-containing steel could act as heterogeneous nucleation cores ofα-Fe during the solidification.With the increase in the TLa content in the steel,the number density of inclusions that could act as effective heterogeneous nucleation cores in the steel gradually increased,which enlarged the ratio of the equiaxed crystal region and the proportion of intragranular acicular ferrite,and refined the as-cast microstructure of the high-strength steel.展开更多
A reasonable heat treatment process for TC4 ELI titanium alloy is crucial to tune microstructures to improve its explosion resistance.However,there is limited investigation on tuning microstructures of TC4 ELI to impr...A reasonable heat treatment process for TC4 ELI titanium alloy is crucial to tune microstructures to improve its explosion resistance.However,there is limited investigation on tuning microstructures of TC4 ELI to improve explosion resistance.Moreover,the current challenge is quantifying microstructural changes'effects on explosion resistance and incorporating microstructural changes into finite element models.This work aims to tune microstructures to improve explosion resistance and elucidate their anti-explosion mechanism,and find a suitable method to incorporate microstructural changes into finite element models.In this work,we systematically study the deformation and failure characteristics of TC4 ELI plates with varying microstructures using an air explosion test and LS-DYNA finite element modeling.The Johnson-Cook(JC)constitutive parameters are used to quantify the effects of microstructural changes on explosion resistance and incorporate microstructural changes into finite element models.Because of the heat treatment,one plate has equiaxed microstructure and the other has bimodal microstructure.The convex of the plate after the explosion has a quadratic relationship with the charge mass,and the simulation results demonstrate high reliability,with the error less than 17.5%.Therefore,it is feasible to obtain corresponding JC constitutive parameters based on the differences in microstructures and mechanical properties and characterize the effects of microstructural changes on explosion resistance.The bimodal target exhibits excellent deformation resistance.The response of bimodal microstructure to the shock wave may be more intense under explosive loading.The well-coordinated structure of the bimodal target enhances its resistance to deformation.展开更多
基金Foundation item:Project(2007CB613704)supported by the National Basic Research Program of ChinaProject(CSTC2013jcyj C60001)supported by the Chongqing Science and Technology Commission of ChinaProject(CQUT1205)supported by the Open Funds from Key Laboratory of Manufacture and Test Techniques for Automobile Parts(Chongqing University of Technology),Ministry of Education,China
文摘The as-cast microstructures and mechanical properties of Mg?4Zn?xY?1Ca (x=1.0, 1.5, 2.0 and 3.0, mass fraction, %) alloys were investigated and compared. The results indicate that all the as-cast alloys are mainly composed ofα-Mg, Mg2Ca, Ca2Mg6Zn3,I (Mg3YZn6) andW (Mg3Y2Zn3) phases. However, with Y content increasing from 0.86% to 2.68%, the amount of the Ca2Mg6Zn3 phase gradually decreases but that of theI (Mg3YZn6) andW (Mg3Y2Zn3) phases gradually increases. Furthermore, an increase in Y content from 0.86% to 2.68% also causes the grain size of the as-cast alloys to gradually decrease. In addition, the tensile and creep properties of the as-cast alloys vary with Y content. Namely, with Y content increasing from 0.86% to 2.68%, the creep properties gradually increase, whereas the tensile properties firstly increase and attain the maximum at 1.77% Y, beyond that they decrease. Amongst the as-cast alloys with 0.86% Y, 1.19% Y, 1.77% Y and 2.68% Y, the alloy with 1.77% Y exhibits the relatively optimal tensile and creep properties.
文摘In this work two new alloys were obtained by extrapolation from a well-known high entropy alloy,the equimolar CoNiFeMnCr one.This was done by the addition of carbon and of tantalum,Ta being one of the strongest MC-former elements.They were produced by conventional casting under inert atmosphere.The obtained microstructures were characterized by X-ray diffraction,metallography,electron microscopy,and energy dispersion spectrometry.Their hardness was also measured by hardness indentation.In parallel,the original CoNiFeMnCr alloy was also synthesized and characterized for comparison.The reference HEA alloy is single-phased with an austenitic structure,while the two{Ta,C}-added alloys are double-phased,with an austenitic matrix and interdendritic script-like TaC carbides.The matrixes of these HEA/TaC alloy are equivalent to an equimolar CoNiFeMnCr alloy to which 2 wt.%Ta is present in solid solution.The presence of the TaC carbides caused a significant increase in hardness which suggests that the HEA/TaC alloys may be mechanically stronger than the HEA reference alloy at high temperature.
基金This work was supported by The National Natural Science Foundation of China (Grant No. 59974009).
文摘A new method (liquidus casting) was used for 356 Al alloy semi-solid slurry making. The structures of 356 Al alloy cast by a Fe mould and semi-continuous casting machine at different temperatures were investigated. How the globular grains form was also discussed. The results show that either being cast by single Fe mould or semi-continuous machine, the micro structures are not conventional dendrites but fine and net-globular grains. The average gram size is smaller than 30μm and suitable enough for thixoforming, meanwhile it can improve the mechanical properties of following products. Under the suitable casting velocity and cooling intensity, most of global grains prolong their global growth and collide with each other before dendritic growth because of the large amount of the nucleation sites.
基金supported by the National Natural Science Foundation of China (No. 51271027)the National High Technology Research and Development Program of China (No. 2013AA031601)
文摘Abstract The as-cast microstructures and solidification paths of the Nb-Si-Ti ternary alloys in the NbsSi3-TisSi3 region were investigated. Since there exist some isomor- phous compounds in the NbsSi3-TisSi3 region, such as aNbsSi3 with B3Cr5 prototype, 13NbsSi3 with Si3W5 pro- totype, 7NbsSi3 with MnsSi3 prototype, and TisSi3 with MnsSi3 prototype, the primary solidification areas of these compounds were not typically indentified in previous experiments. In the present paper, the microstructure observation, the phase identification, and the composition measurement were performed using scanning electron microscopy (SEM), X-ray diffraction (XRD), and electron probe microanalysis (EPMA), respectively. No ternary compound is found. There exist three primary solidification areas, 13Nbs_x(Ti)xSi3, ~Nbs_x(Ti)xSi3, and Tis-x(Nb)xSi3 in the NbsSi3-TisSi3 region. Together with the literaturereported experimental data and optimization results, the liquidus projection of the whole Nb-Si-Ti ternary system is constructed, and totally ten primary solidification areas-- diamond-Si, Nb1-x(Ti)xSi2, Ti1-x(Nb)xSi2, Ti1-x(Nb)xSi, Ti5-x(Nb)xSi4, βNb5-x(Ti)xSi3,αNb5-x(Ti)xSi3, Ti5-x (Nb)xSi3, (Nb,Ti)3Si, and BCC--and nine transitional invariant reactions-L + Nb1-x(Ti)xSi2 → Ti1-x(Nb)x Si2 + Si, L + Nb1-x(Ti)xSi2 → Ti1-x(Nb)xSi2 + Ti5- (Nb)xSi4, L + Ti5-x(Nb)xSi4 → Ti1-x(Nb)xSi2 + Ti1-x (Nb)xSi, L + 13Nb5-x(Ti)5Si3→ Nb1-x(Ti)xSi2 + Ti5-x (Nb)xSi4, L + βNb5-x(Ti)xSi3→b5-x(Ti)xSi3 +Ti5-x (Nb)xSi4, L + αNb5-x(Ti)αSi3 → Ti5-x(Nb)xSi3 + Ti5-x(Nb)x Si4, L + αNb5-x(Ti)xSi3 →βNb5-x(Ti)xSi3 + Ti5-x(Nb)xSi3, L + βNb5-xTb-xSi3 → Ti5-x(Nb)xSi3 + (Nb,Ti)3Si, and L + (Nb,Ti)3Si → Ti5-x(Nb)xSi3 + BCC are confirmed.
基金Project(LRB05-311)supported by the Postdoctoral Foundation of Heilongjiang Province,ChinaProject(HEUFT05038)supported by the Basic Research Foundation of Harbin Engineering University,ChinaProject(2009AA03Z423)supported by the National High-TechResearch and Development Program of China
文摘The effects of cooling rates corresponding to different diameters of the steel mould and laser surface melting(LSM)on the as-cast microstructures of Mg-9Al-xSi(x=1,3)(mass fraction,%)alloys were investigated by XRD and OM.The results show that obvious refinement of the alloy microstructure is obtained with increasing cooling rate by conventional ingot metallurgy.However, no evident modified morphologies of both dendritic primary Mg2Si and Chinese script eutectic Mg2Si in the Mg-Al-Si alloy occurs. Surprisingly,the morphologies of Mg2Si phases within the laser-melted Mg-Al-Si alloy transform drastically from both coarse Chinese script shape for the eutectic Mg2Si and dendrite for the primary Mg2Si to fine spherical particles with an average size of about 3μm due to the rapid cooling of the melted layer,and the Mg2Si particulates distribute more uniformly in theα-Mg matrix.
基金Project(2005CB623707) supported by the National Basic Research Program of China
文摘Al-Zn-Mg-Cu-Zr ingots with diameter of 200 mm were made by low frequency electromagnetic casting (LFEC) and conventional direct chill (DC) casting process. The results show that under the low frequency electromagnetic field (25 Hz, 32 mT) the microstructures of LFEC ingot from the border to the center on the cross section are all equiaxed grains, and the grains are much finer and more uniform than that of DC ingot. The magnetic flux density plays an important role in the microstructure formation of LFEC ingots. With increasing the magnetic flux density from 0 mT to 32 mT, grains become finer (from about 120 urn to 30 urn) and more uniform. While, with increasing the magnetic flux density from 32 mT to 46 mT, the grains change much slowly. In the range of experimental parameters, the optimum magnetic flux density for LFEC process is found to be 32 mT.
基金financially supported by the Key Scientific Research Project in Shanxi Province,China(No.202102050201003)the National Natural Science Foundation of China(No.52071227)+2 种基金the Natural Science Foundation of Shanxi Province,China(No.202103021223293)the Central Guiding Science and Technology Development of Local Fund,China(No.YDZJSK20231A046)the Postgraduate Education Innovation Project of Shanxi Province,China(No.2023Y686)。
文摘Mg-6Zn-2X(Fe/Cu/Ni)alloys were prepared through semi-continuous casting,with the aim of identifying a degradable magnesium(Mg)alloy suitable for use in fracturing balls.A comparative analysis was conducted to assess the impacts of adding Cu and Ni,which result in finer grains and the formation of galvanic corrosion sites.Scanner electronic microscopy examination revealed that precipitated phases concentrated at grain boundaries,forming a semi-continuous network structure that facilitated corrosion penetration in Mg-6Zn-2Cu and Mg-6Zn-2Ni alloys.Pitting corrosion was observed in Mg-6Zn-2Fe,while galvanic corrosion was identified as the primary mechanism in Mg-6Zn-2Cu and Mg-6Zn-2Ni alloys.Among the tests,the Mg-6Zn-2Ni alloy exhibited the highest corrosion rate(approximately 932.9 mm/a)due to its significant potential difference.Mechanical testing showed that Mg-6Zn-2Ni alloy possessed suitable ultimate compressive strength,making it a potential candidate material for degradable fracturing balls,effectively addressing the challenges of balancing strength and degradation rate in fracturing applications.
基金Project(51374084)supported by the National Natural Science Foundation of ChinaProject supported by the Power Electronics Science and Education Development Program of Delta Environmental&Educational Foundation,ChinaProject(2010K10-08)supported by the Science and Technology Plan(Industrial Research)of Shaanxi Province,China
文摘Long period stacking ordered(LPSO) structure phases were prepared by conventional solidification method in Mg(94)Zn3YxGd(3-x)(x=3,2,1.5,1,mole fraction) alloys,the microstructures,corrosion and compressive mechanical properties of which were investigated,separately.The results reveal that the microstructures of the as-cast Mg(94)Zn3YxGd(3-x) alloys,with n(Zn)/n(Y+Gd)=1:1,consist of α(Mg) phase,Mg3Zn3RE2(W) phase,Mg(12)ZnRE(14H-LPSO) phase and a few bright cube-shaped Mg-Y-Gd phases.The formation and the distribution of LPSO-phase in the alloys can be influenced by the content of Gd.The volume fraction of 14H-LPSO phase increases first and then decreases with the increase of the Gd content.For the electrochemical impedance spectroscopy(EIS) measurement,a R(Q(R(QR))) model was used to fit the test results in 3.5%(mass fraction) NaCl solution at room temperature.The corrosion current densities of all samples are about 10-(-5) A/cm-2.When x(Gd)≤1%,Mg-Zn-Y-(Gd)alloy shows good corrosion resistance,which is better than that of the commercial AZ91 D magnesium alloy.The corrosion rate increases when the Gd content is higher than 1.5%.At room temperature,the compressive properties of Mg-Zn-Y-(Gd) alloys increase remarkably with the increase of the volume fraction of LPSO phase.In addition,the pinning effect of W-phase and dispersive cube-shaped Mg-Y-Gd phase is beneficial to improving the mechanical properties of as-cast Mg(94)Zn3YxGd(3-x) alloy in deformation process.
基金supported by the National Natural Science Foundation of China(No.52273280)the Creative Research Groups of China(No.51921001).
文摘High-entropy alloys(HEAs),which were introduced as a pioneering concept in 2004,have captured the keen interest of nu-merous researchers.Entropy,in this context,can be perceived as representing disorder and randomness.By contrast,elemental composi-tions within alloy systems occupy specific structural sites in space,a concept referred to as structure.In accordance with Shannon entropy,structure is analogous to information.Generally,the arrangement of atoms within a material,termed its structure,plays a pivotal role in dictating its properties.In addition to expanding the array of options for alloy composites,HEAs afford ample opportunities for diverse structural designs.The profound influence of distinct structural features on the exceptional behaviors of alloys is underscored by numer-ous examples.These features include remarkably high fracture strength with excellent ductility,antiballistic capability,exceptional radi-ation resistance,and corrosion resistance.In this paper,we delve into various unique material structures and properties while elucidating the intricate relationship between structure and performance.
文摘As-east mierostruetures and their distribution of Mg-Zn-Y ternary alloy with high magnesium, low zinc and yttrium were examined using Nikon Epiphot optical microscopy (OM), RigakuD/max-3C X- ray diffraetion (XRD), and JEOL JSM-6700F scanning electron microscopy (SEM) equipped with an energydispersive X-ray spectroscopy (EDS). In the as-east mierostructures, Yttrium and zinc tend to segregate at grain boundaries,
基金supported by the National Natural Science Foundation of China(Nos.52171098 and 51921001)the State Key Laboratory for Advanced Metals and Materials(No.2022Z-02)+1 种基金the National High-level Personnel of Special Support Program(No.ZYZZ2021001)the Fundamental Research Funds for the Central Universities(Nos.FRF-TP-20-03C2 and FRF-BD-20-02B).
文摘High-entropy alloys(HEAs)possess outstanding features such as corrosion resistance,irradiation resistance,and good mechan-ical properties.A few HEAs have found applications in the fields of aerospace and defense.Extensive studies on the deformation mech-anisms of HEAs can guide microstructure control and toughness design,which is vital for understanding and studying state-of-the-art structural materials.Synchrotron X-ray and neutron diffraction are necessary techniques for materials science research,especially for in situ coupling of physical/chemical fields and for resolving macro/microcrystallographic information on materials.Recently,several re-searchers have applied synchrotron X-ray and neutron diffraction methods to study the deformation mechanisms,phase transformations,stress behaviors,and in situ processes of HEAs,such as variable-temperature,high-pressure,and hydrogenation processes.In this review,the principles and development of synchrotron X-ray and neutron diffraction are presented,and their applications in the deformation mechanisms of HEAs are discussed.The factors that influence the deformation mechanisms of HEAs are also outlined.This review fo-cuses on the microstructures and micromechanical behaviors during tension/compression or creep/fatigue deformation and the application of synchrotron X-ray and neutron diffraction methods to the characterization of dislocations,stacking faults,twins,phases,and intergrain/interphase stress changes.Perspectives on future developments of synchrotron X-ray and neutron diffraction and on research directions on the deformation mechanisms of novel metals are discussed.
基金financially supported by the Program for New Century Excellent Talents in University of China(Grant No.NCET-10-0023)the Program for Hongliu Outstanding Talents of Lanzhou University of Technologythe National Basic Research Program of China(Grant No.G2010CB635106)
文摘The effects of Y addition amount on the microstructures and mechanical properties of as-cast MgZn-Nd alloy have been investigated by using an optical microscope, a scanning electron microscope, backscattered electronic imaging technique, an X-ray diffractometer, a differential thermal analyzer and a universal testing machine. There are three kinds of ternary phases in the Mg-Zn-Y system alloys, such as I phase(Mg3Zn6Y), W phase(Mg3Zn3Y2) and Z or X phase(Mg12Zn Y). The experimental results in the present study indicate that the Mg-Zn-RE(RE includes Y and Nd) ternary phases change from the I + W phases in turn to unique W, W + Z and unique Z as the Y content increases from 0% to 3%. Simultaneously, their distribution gradually changes from small particle-like form to continuous network form. The grain size first decreases as the Y content increases from 0% to 1% Y, then increases when the Y content exceeds 1% and finally decreases again when the content exceeds 3% due to the variation of growth restriction factor caused by the increased Y element and the change of the ternary phases. The hardness continuously increases because of the increased ternary phase amount. The ultimate tensile strength and elongation first increase within the range of 0-1% Y, also due to the increased ternary phase amount and grain refinement, and then decreases because of the grain coarsening, porosity formation and continuous network distribution of the ternary phases. The grain bonding strength of the W phase-containing alloys is quite strong and the W phase is an ideal strengthening phase if a given amount of it distributes in discontinuous and small-sized form. The alloy with 1% Y only has one ternary phase of W, but has the best combination of mechanical properties. The fracture regimes of these alloys always present a transgranular mode.
基金This research was financially supported by the National Natural Science Foundation of China (No.50771013)the Key Grant Project of the Ministry of Education of China(No.704008)the Program for New Century Excellent Talents in Universities (No.NCET-04-01017).
文摘The effect of heat treatment on the microstructure evolution of a high Nb containing TiAl alloy has been studied. The results indicate that β-segregation, β-segregation and S-segregation in the as-cast and as-forged alloys can be effectively eliminated at the temperature above Tα (1350-1400℃) for long holding time (12-24 h) and the full lamellar (FL) microstructure is gained. For the two alloys, the lamellar colony sizes are 120 μm and 2000 μm, respectively after heat treatment at 1400℃ for 12 h. Meanwhile, the sizes are 210 μm and 3000 μm, respectively at 1350℃ for 24 h. To get a fine homogenous microstructure, the primary as-cast alloy is first subjected to preheat treatment for eliminating the segregations. After the preheat treatment, the ailoy is processed by the multi-step canned forging to attain the microstructure with fine grain size.
基金Natural Science Foundation of Shandong Province(ZR2016EEM48).
文摘The A356 castings were fabricated using a well-developed temperature controlled permanent mold.To improve the strength and hardness of cast A356,the microstructures and mechanical properties of as-cast and T6 heat treated A356 alloy with various mold and pouring temperatures were studied.The results reveal that the undercooling is closely related to the mold and pouring temperatures.As the mold/pouring temperature changed from 258°C/680°C and 270°C/680°C to 288°C/650°C,the in-situ undercooling is 12°C,17°C and 11°C,respectively.It is observed that the Si phase changes from long continuous flake to discontinuous globular-fibrous morphology after T6 heat treatment as the mold and pouring temperature is 270°C/680°C,and the T6 heat treated specimens exhibit better mechanical properties in comparison to those as-cast ones with an increase of 162%and 102%in yield strength and elongation,which are 34.6%and 190%higher than the ASTM B108-03 a standard,respectively.As a result,the tensile fracture morphology of the as-cast A356 alloy shows quasi-cleavage fracture and the T6 heat treated A356 alloy shows ductile fracture.
文摘The influences of the low frequency electromagnetic field on the horizontal direct chill casting process were investigated experimentally. Ingots of 2024 aluminum alloy with a cross size of 40 mm× 200 mm were produced by the conventional horizontal chill casting process and low frequency electromagnetic horizontal chill casting processre- spectively. The as-cast structures and the mechanical property of the ingots were examined. The results showed that the low frequency electromagnetic field could sub- stantially refine the microstructures and pronouncedly reduce the macrosegregation in the horizontal direct chill casting process. Moreover, the surface quality of the ingot was prominently improved by the low frequency electromagnetic field. The fracture strength and elongation percentage of the ingot was increased with the low frequency electromagnetic field.
基金Project supported by Chinese Academy of Sciences for Distinguished Talents Program(D0104 WLM)
文摘Mg-20Gd( %, mass fraction)samples were prepared using melt-spinning and copper mold casting techniques. Microstructures and properties of the Mg-20Gd were investigated. Results show that the melt-spun ribbon is mainly composed of supersaturated a-Mg solid solution phase and the as-cast ingot mainly contains a-Mg solid solution and MgsGd phase. The differential scanning calorimeter (DSC) curve of the ribbon exhibits a small exothermic peak in the temperature range from 630 to 680 K, which indicates that the ribbon contains a metastable phase (amorphous). Tensile strength at room temperature of the melt-spun ribbon and as-cast specimen are 308 and 254 MPa, respectively. The elongations of the two samples are less than 2 %. The fracture surfaces demonstrate that the fracture mode of the as-cast Mg-20Gd is a typical cleavage fracture and that of the melt-spun sample is a combination of brittle fracture and ductile fracture.
文摘High coercivity was obtained in bulk RE(Dy) Fe C(B) alloys with RE=Nd, Pr and Mm. In the as cast state, the samples show a negligible coercivity H ci . Magnetic hardening takes place when annealing the as cast alloys at around 1173 K for several hours, which produces an H ci greater than 1200 kA·m -1 . Boron appears to be very important for achieving high coercivity, which is found to increase with increasing Dy content. SEM studies show a very small grain size at around 2 μm. X ray diffraction and TEM studies reveal the existence of multiphases after annealing. They are RE 2Fe 14 (B,C), RE 2Fe 3C x , alpha Fe(RE) and RE 2Fe 17 (B,C) in order of their amounts. The carbide RE 2Fe 3C x has a complicated hexagonal structure with a =0.468 nm and c =0.795 nm.
基金supported by the National Natural Science Foundation of China(No.52204340)the Natural Science Foundation of Guangxi,China(No.2022GXNSFBA035621)The authors wish to thank the Advanced Manufacturing and Materials Centre from Warwick Manufacturing Group(WMG),University of Warwick for the provision of facilities and equipment.
文摘Microstructures determine mechanical properties of steels,but in actual steel product process it is difficult to accurately control the microstructure to meet the requirements.General microstructure characterization methods are time consuming and results are not rep-resentative for overall quality level as only a fraction of steel sample was selected to be examined.In this paper,a macro and micro coupled 3D model was developed for nondestructively characterization of steel microstructures.For electromagnetic signals analysis,the relative permeability value computed by the micro cellular model can be used in the macro electromagnetic sensor model.The effects of different microstructure components on the relative permeability of duplex stainless steel(grain size,phase fraction,and phase distribu-tion)were discussed.The output inductance of an electromagnetic sensor was determined by relative permeability values and can be val-idated experimentally.The findings indicate that the inductance value of an electromagnetic sensor at low frequency can distinguish dif-ferent microstructures.This method can be applied to real-time on-line characterize steel microstructures in process of steel rolling.
基金support from S&T Program of Hebei(Grant No.20311004D)the National Natural Science Foundation of China(Grant Nos.U22A20171 and 52104342)+1 种基金the Natural Science Foundation of Hebei Province(Grant No.E2021203062)the High Steel Center(HSC)at Yanshan University,Hebei Innovation Center of the Development and Application of High Quality Steel Materials,and Hebei International Research Center of Advanced and Intelligent Manufacturing of High Quality Steel Materials.
文摘Advanced high-strength steel ingots with total lanthanum(TLa)contents of 0,15×10^(–6),86×10^(–6)and 360×10^(–6)were prepared through laboratory experiments.The modification of inclusions and the variation of the as-cast microstructure with the content of lanthanum in the high-strength steel were analyzed.The result showed that with the increase in the TLa content in the steel from 0 to 360×10^(–6),the modification path of inclusions in the as-cast steel was Al2O_(3)and calcium aluminate→LaAlO_(3)→La_(2)O_(2)S→La_(2)O_(2)S–La2O_(3).The addition of La in the high-strength steel significantly refined the solidification structures.With the increase in the TLa content in the steel from 0 to 360×10^(–6),the ratio of the equiaxed crystal region in the macrostructure increased from 30.1%to 50.7%,the proportion of the high-angle grain boundary in the microstructure increased from 36.9%to 69.8%,and the area fraction of the acicular ferrite and the bainite increased from 0 to 93.3%.Inclusions of LaAlO_(3),La_(2)O_(2)S and La2O_(3)in the La-containing steel could act as heterogeneous nucleation cores ofα-Fe during the solidification.With the increase in the TLa content in the steel,the number density of inclusions that could act as effective heterogeneous nucleation cores in the steel gradually increased,which enlarged the ratio of the equiaxed crystal region and the proportion of intragranular acicular ferrite,and refined the as-cast microstructure of the high-strength steel.
基金National Key Laboratory of Science and Technology on Materials under Shock and Impact(Grant No.WDZC2022-4)to provide fund for conducting experiments。
文摘A reasonable heat treatment process for TC4 ELI titanium alloy is crucial to tune microstructures to improve its explosion resistance.However,there is limited investigation on tuning microstructures of TC4 ELI to improve explosion resistance.Moreover,the current challenge is quantifying microstructural changes'effects on explosion resistance and incorporating microstructural changes into finite element models.This work aims to tune microstructures to improve explosion resistance and elucidate their anti-explosion mechanism,and find a suitable method to incorporate microstructural changes into finite element models.In this work,we systematically study the deformation and failure characteristics of TC4 ELI plates with varying microstructures using an air explosion test and LS-DYNA finite element modeling.The Johnson-Cook(JC)constitutive parameters are used to quantify the effects of microstructural changes on explosion resistance and incorporate microstructural changes into finite element models.Because of the heat treatment,one plate has equiaxed microstructure and the other has bimodal microstructure.The convex of the plate after the explosion has a quadratic relationship with the charge mass,and the simulation results demonstrate high reliability,with the error less than 17.5%.Therefore,it is feasible to obtain corresponding JC constitutive parameters based on the differences in microstructures and mechanical properties and characterize the effects of microstructural changes on explosion resistance.The bimodal target exhibits excellent deformation resistance.The response of bimodal microstructure to the shock wave may be more intense under explosive loading.The well-coordinated structure of the bimodal target enhances its resistance to deformation.