As the most promising alternative to traditional indium tin oxide (ITO), silver nanowire (AgNW) composite transparent electrodes with improved stabilities compared with that of the pristine AgNWs networks have bee...As the most promising alternative to traditional indium tin oxide (ITO), silver nanowire (AgNW) composite transparent electrodes with improved stabilities compared with that of the pristine AgNWs networks have been demonstrated in various devices. However, a stable AgNW/polymer composite as the bottom electrode for perovskite solar cells has not yet been reported. Here, a long-term stable, smooth AgNW composite with an antioxidant-modified chitosan polymer was developed. The modified polymer can effectively protect pristine AgNWs from side reactions with perovskite, whereas it does not block the carrier drift through the interface of the insulating polymer. The as-prepared AgNW/polymer composite electrode exhibited a root mean square roughness below 10 nm at a scan size of 50 μm × 50 μm, and its original sheet resistance did not change obviously after aging at 85 ℃ for 40 days in air. As a result, the perovskite solar cell employing the composite as the bottom electrode yielded a power conversion efficiency of 7.9%, which corresponds to nearly 75% of that of the reference device with an ITO electrode.展开更多
基金This study was sponsored by 59th China Postdoctoral Science Foundation (No. 2016M590318), Special Financial Grant from China Postdoctoral Sdence Foundation (No. 2017T100270), National Natural Science Foundation of China (Nos. 51603043 and 51673042), and the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Leaming (No. TP2015002).
文摘As the most promising alternative to traditional indium tin oxide (ITO), silver nanowire (AgNW) composite transparent electrodes with improved stabilities compared with that of the pristine AgNWs networks have been demonstrated in various devices. However, a stable AgNW/polymer composite as the bottom electrode for perovskite solar cells has not yet been reported. Here, a long-term stable, smooth AgNW composite with an antioxidant-modified chitosan polymer was developed. The modified polymer can effectively protect pristine AgNWs from side reactions with perovskite, whereas it does not block the carrier drift through the interface of the insulating polymer. The as-prepared AgNW/polymer composite electrode exhibited a root mean square roughness below 10 nm at a scan size of 50 μm × 50 μm, and its original sheet resistance did not change obviously after aging at 85 ℃ for 40 days in air. As a result, the perovskite solar cell employing the composite as the bottom electrode yielded a power conversion efficiency of 7.9%, which corresponds to nearly 75% of that of the reference device with an ITO electrode.