方面级别情感分析是对给定句子的不同方面进行情感极性预测。在长句子中有许多无关词会干扰情感预测的结果,且这些无关词与中心词存在一定的距离。对此,提出以下解决方案:设计上下文迭代学习网络。提出上下文注意力模块(context attenti...方面级别情感分析是对给定句子的不同方面进行情感极性预测。在长句子中有许多无关词会干扰情感预测的结果,且这些无关词与中心词存在一定的距离。对此,提出以下解决方案:设计上下文迭代学习网络。提出上下文注意力模块(context attention modules,CAM),模块采用上下文动态特征掩码(context features dynamic mask,CDM)遮掩距离中心词较远的词,上下文动态特征权重(context features dynamic weighted,CDW)减小较远词的权重。文中设计的CAM经过多层迭代,增强了方面词在上下文部分的特征提取。在公共的基准数据集上进行一系列的试验比对,试验结果证明文中提出的方法是有效的。展开更多
现有的方面级情感分析方法对句法依存树蕴含信息使用不足,忽略多方面词之间的关联,并且缺少对外部知识的使用。针对这些问题,提出一种知识增强的方面词交互图神经网络(KEAIG)模型。首先利用融合领域知识的BERT-PT (Bidirectional Encode...现有的方面级情感分析方法对句法依存树蕴含信息使用不足,忽略多方面词之间的关联,并且缺少对外部知识的使用。针对这些问题,提出一种知识增强的方面词交互图神经网络(KEAIG)模型。首先利用融合领域知识的BERT-PT (Bidirectional Encoder Representation from Transformers with Post-Train)编码文本,并利用知识图谱增加句法树的情感信息。模型分两部分对句法依存树蕴含的信息进行提取:第一部分利用句法依存树中的关联关系和每个单词的词性标签提取句子特征,第二部分对融入知识图谱的句法依存树进行特征提取。之后使用融合门控单元将多方面词关联特征融合进提取到的特征中。最后将两部分句子表示拼接起来作为最终分类依据。在4个数据集上的实验结果表明,所提模型相较于基准模型关系图注意力网络(RGAT),在准确率上分别提升了2.17%、5.54%、2.60%和2.83%,在F1值(Macro-F1)上分别提升了2.69%、6.87%、8.77%和14.70%,充分表明了利用句法树、引入外部知识和提取多方面词关联的有效性。展开更多
目前大多数方面级情感分类研究都忽略了方面词的建模,以及方面词与上下文之间的交互信息,并且难以体现语法上与方面词有直接联系上下文单词的重要程度。针对上述问题,提出基于方面词交互(aspect word interaction,AWI)和图卷积网络(grap...目前大多数方面级情感分类研究都忽略了方面词的建模,以及方面词与上下文之间的交互信息,并且难以体现语法上与方面词有直接联系上下文单词的重要程度。针对上述问题,提出基于方面词交互(aspect word interaction,AWI)和图卷积网络(graph convolutional network,GCN)的方面级情感分类模型(AWI-GCN)。使用双向长短期记忆网络(bi-directional long short-term memory,Bi-LSTM)分别提取方面词和上下文的特征;采用GCN根据句法依存树进一步提取与方面词有直接语法联系的上下文情感特征;利用注意力机制学习方面词与上下文的交互信息,同时提取上下文中为方面词情感分类做出重要贡献的情感特征。针对3个公开数据集上的仿真实验结果表明,AWI-GCN模型相比当前代表模型取得了更好的情感分类效果。展开更多
【目的】针对方面情感分类输入类别在不同领域之间差异较大,汽车用户评论文本语义信息不全,语义特征难以提取等问题,提出基于双通道输入的并行双向编码表征(bidirectional encoder representation from transformers,BERT)双向长短期记...【目的】针对方面情感分类输入类别在不同领域之间差异较大,汽车用户评论文本语义信息不全,语义特征难以提取等问题,提出基于双通道输入的并行双向编码表征(bidirectional encoder representation from transformers,BERT)双向长短期记忆多头自注意力模型的方面情感分类方法。【方法】首先采用了方面情感和方面抽取的双重标签进行标注;其次通过并行的方面抽取和方面情感分类任务通道,分别使用BERT、双向长短期记忆网络(bidirectional long and short-term memory networks,Bi-LSTM)及多头注意力机制(multihead self-attention,MHSA)提取更深层次的语义信息及近距离和远距离特征信息;最后采用条件随机场(conditional random field,CRF)分类器和Softmax分类器进行分类。【结果】在相关的汽车用户评论文本数据集和多语言混合数据集上,本研究提出的模型相较于主流的方面情感分类方法,具有同步抽取方面词和判断情感极性的能力,且有效提高了方面词抽取和方面情感分类的准确率和F_(1)值。【结论】本研究提出的模型更有利于汽车销售者分析用户评论,同时对识别用户评论文本的情感极性的研究也有一定的参考价值。展开更多
文摘方面级别情感分析是对给定句子的不同方面进行情感极性预测。在长句子中有许多无关词会干扰情感预测的结果,且这些无关词与中心词存在一定的距离。对此,提出以下解决方案:设计上下文迭代学习网络。提出上下文注意力模块(context attention modules,CAM),模块采用上下文动态特征掩码(context features dynamic mask,CDM)遮掩距离中心词较远的词,上下文动态特征权重(context features dynamic weighted,CDW)减小较远词的权重。文中设计的CAM经过多层迭代,增强了方面词在上下文部分的特征提取。在公共的基准数据集上进行一系列的试验比对,试验结果证明文中提出的方法是有效的。
文摘现有的方面级情感分析方法对句法依存树蕴含信息使用不足,忽略多方面词之间的关联,并且缺少对外部知识的使用。针对这些问题,提出一种知识增强的方面词交互图神经网络(KEAIG)模型。首先利用融合领域知识的BERT-PT (Bidirectional Encoder Representation from Transformers with Post-Train)编码文本,并利用知识图谱增加句法树的情感信息。模型分两部分对句法依存树蕴含的信息进行提取:第一部分利用句法依存树中的关联关系和每个单词的词性标签提取句子特征,第二部分对融入知识图谱的句法依存树进行特征提取。之后使用融合门控单元将多方面词关联特征融合进提取到的特征中。最后将两部分句子表示拼接起来作为最终分类依据。在4个数据集上的实验结果表明,所提模型相较于基准模型关系图注意力网络(RGAT),在准确率上分别提升了2.17%、5.54%、2.60%和2.83%,在F1值(Macro-F1)上分别提升了2.69%、6.87%、8.77%和14.70%,充分表明了利用句法树、引入外部知识和提取多方面词关联的有效性。
文摘目前大多数方面级情感分类研究都忽略了方面词的建模,以及方面词与上下文之间的交互信息,并且难以体现语法上与方面词有直接联系上下文单词的重要程度。针对上述问题,提出基于方面词交互(aspect word interaction,AWI)和图卷积网络(graph convolutional network,GCN)的方面级情感分类模型(AWI-GCN)。使用双向长短期记忆网络(bi-directional long short-term memory,Bi-LSTM)分别提取方面词和上下文的特征;采用GCN根据句法依存树进一步提取与方面词有直接语法联系的上下文情感特征;利用注意力机制学习方面词与上下文的交互信息,同时提取上下文中为方面词情感分类做出重要贡献的情感特征。针对3个公开数据集上的仿真实验结果表明,AWI-GCN模型相比当前代表模型取得了更好的情感分类效果。
文摘【目的】针对方面情感分类输入类别在不同领域之间差异较大,汽车用户评论文本语义信息不全,语义特征难以提取等问题,提出基于双通道输入的并行双向编码表征(bidirectional encoder representation from transformers,BERT)双向长短期记忆多头自注意力模型的方面情感分类方法。【方法】首先采用了方面情感和方面抽取的双重标签进行标注;其次通过并行的方面抽取和方面情感分类任务通道,分别使用BERT、双向长短期记忆网络(bidirectional long and short-term memory networks,Bi-LSTM)及多头注意力机制(multihead self-attention,MHSA)提取更深层次的语义信息及近距离和远距离特征信息;最后采用条件随机场(conditional random field,CRF)分类器和Softmax分类器进行分类。【结果】在相关的汽车用户评论文本数据集和多语言混合数据集上,本研究提出的模型相较于主流的方面情感分类方法,具有同步抽取方面词和判断情感极性的能力,且有效提高了方面词抽取和方面情感分类的准确率和F_(1)值。【结论】本研究提出的模型更有利于汽车销售者分析用户评论,同时对识别用户评论文本的情感极性的研究也有一定的参考价值。