期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Experimental Study of Rubberized Asphalt Emulsion Modified Portland cement concrete
1
作者 Li Guoqiang Wei Lianyu wand Maoxiang, and Huang Wei 《河北工业大学学报》 CAS 1997年第A01期48-57,共10页
The poor fatigue properties and high rigidity of cement asphalt emulsion treated mis(CETM) have for a long time been problems restricting its further development making it impossible for C-ETMto be used as surface lay... The poor fatigue properties and high rigidity of cement asphalt emulsion treated mis(CETM) have for a long time been problems restricting its further development making it impossible for C-ETMto be used as surface layer materials. In this paper, a new kind of cement asphalt emulsion composite-rubberized asphalt emulsion modified Portland cement concrete (RACC) was proposed, which was formed by dispersing rubberized aSPhalt emulsion coated coarse aggregates into cement mortar matrix. In order to evaluate systematically the performance of RACC, laboratory tests with nearly one thousand SPecimen were conducted for resilient modulus, fatigue properties, ultimate ban and length,abrasion, temperature contraction, and dry shrinkage. The experimental results show that the problems existed in C-ETM have to a great extends been solved by RACc. To verify the field performance and inquire into paving technology, teSt road appearsatlsfactory it is concluded that when thed ape surface laycr of semi-rigid base course, RACC is more for surface layer material than both Portland cement concrete(PCC) and asphalt concrete(AC) 展开更多
关键词 AC ETM ICPT Experimental Study of Rubberized asphalt emulsion Modified Portland cement concrete
下载PDF
Compatibility evaluation between waterborne epoxy resin and SBR latex modified asphalt emulsion
2
作者 Jianhua Yang Zhengqi Zhang Ying Fang 《Journal of Traffic and Transportation Engineering(English Edition)》 EI CSCD 2024年第1期160-171,共12页
Good compatibility between waterborne epoxy resin(WER)modifier and styrene-butadiene rubber(SBR)latex modified asphalt emulsion(SBRE)is an essential premise for good pavement performance of WER and SBR latex composite... Good compatibility between waterborne epoxy resin(WER)modifier and styrene-butadiene rubber(SBR)latex modified asphalt emulsion(SBRE)is an essential premise for good pavement performance of WER and SBR latex compositely modified asphalt emulsion(WSAE).This study aims to explore the compatibility between WER modifier and SBRE.To achieve the goal,several WER modifiers produced by two methods were first selected to modify SBRE,thus the WSAEs were prepared.Next,storage stability and workability of the WSAEs themselves,and high-temperature performance,rheological behavior and temperature sensitivity of their evaporated residues were compared and evaluated via performing a series of experiments,respectively,thus the WER modifier possessing an optimal modification effect was recommended.Results show that the storage stability of WSAEs is sensitive to the amount of WERs.The incorporation of 1%WERs by the mass of SBRE improves the storage stability of SBRE,while WERs that exceed 1%weaken its storage stability.When the WERs reach 3%and 4%,the 5 d storage stability of prepared WSAEs will be beyond the limitation of specification.Incorporating WERs into SBRE negatively affects the workability of SBRE,and the workability of WSAEs is adversely influenced by the WERs content and the storage time.To ensure the construction,the WSAEs with 3%and 4%WERs should not be stored for more than 36 h and 48 h,respectively.The WERs effectively improve the high-temperature performance of SBRE residue,especially the 3%WERs.Besides,the WERs notably enhance the rheological property and thermal stability of SBRE residue.In contrast,the WER modifier produced by chemically modified method has a smaller adverse impact on the storage stability and workability of WSAE,and a larger enhancement on the high-temperature performance,rheological property and thermal stability of SBRE residue,which is thus recommended to modify SBRE. 展开更多
关键词 Waterborne epoxy resin SBR modified asphalt emulsion WORKABILITY Rheological property Temperature sensitivity Compatibility evaluation
原文传递
Compressive Strength Development and Microstructure of Cement-asphalt Mortar 被引量:7
3
作者 王强 阎培渝 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第5期998-1003,共6页
The compressive strength developing process and the microstructure of cement-asphalt mortar (CA mortar) were investigated.The fluidity of CA mortar has a great influence on its strength.The optimum value of spread d... The compressive strength developing process and the microstructure of cement-asphalt mortar (CA mortar) were investigated.The fluidity of CA mortar has a great influence on its strength.The optimum value of spread diameter of slump flow test is in the range of 300 to 400 mm.The compressive strength of CA mortar keeps a relatively high growth rate in 56 days and grows slowly afterwards.The residual water of hydration in CA mortar freezes under minus environmental temperature which can lead to a significant reduction of the strength of CA mortar.Increasing A/C retards asphalt emulsion splitting and thus prolongs the setting process of CA mortar.The hydration products of cement form the major structural framework of hardened CA mortar and asphalt is a weak phase in the framework but improves the viscoelastic behavior of CA mortar.Therefore,asphalt emulsion should be used as much as possible on the condition that essential performance criterions of CA mortar are satisfied. 展开更多
关键词 asphalt emulsion compressive strength CA mortar MICROSTRUCTURE
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部