To discuss the pavement performance of basalt fiber-modified asphalt mixtures,the optimum dosages of asphalt and fibers are studied by the Marshall test and the rutting test.The results demonstrate that the optimum do...To discuss the pavement performance of basalt fiber-modified asphalt mixtures,the optimum dosages of asphalt and fibers are studied by the Marshall test and the rutting test.The results demonstrate that the optimum dosages of asphalt and fibers are 4.63% and 0.3%,respectively.Then the pavement performances of basalt(polyester,xylogen)fiber-modified asphalt mixtures are investigated through high temperature stability tests,water stability tests and low temperature crack resistance tests.It indicates that the pavement performances of the fiber-modified asphalt mixtures such as rutting dynamic stability,freezing splitting tensile strength,low temperature crack resistance and so on are improved compared with control asphalt mixture.The results show that the pavement performances of asphalt mixtures can be improved by fiber-modifiers.Besides,the improvement effects of basalt fiber are superior to polyester fiber and xylogen fiber.展开更多
Based on the analysis of the main failures discovered in pavement on steel deck plate and the demanding service condition of the pavement on steel deck, high-temperature rutting test, low-temperature bending test and ...Based on the analysis of the main failures discovered in pavement on steel deck plate and the demanding service condition of the pavement on steel deck, high-temperature rutting test, low-temperature bending test and controlled stress flexural fatigue test are used to study the performance of asphalt mixtures modified by epoxy resin including high-temperature stability, low-temperature cracking-resistance, and fatigue cracking-resistance, which are served to evaluate the modification effect of epoxy resin of different contents. With the addition of epoxy resin, all the three performances are improved greatly. However, when the amount of epoxy resin added is over a certain value, the modification effect will be stable with no extra benefit detected. Finally, in terms of the properties of the three respects, 20%, 30%, 30% are given separately as the proposal adding contents.展开更多
Design method for large stone porous asphalt mixtures (LSPM) was analyzed to avoid the early distresses of semi-rigid asphalt pavements. Based on stone-to-stone skeleton structure concept, processes of LSPM gradatio...Design method for large stone porous asphalt mixtures (LSPM) was analyzed to avoid the early distresses of semi-rigid asphalt pavements. Based on stone-to-stone skeleton structure concept, processes of LSPM gradation design was given. The gradation composite design for LSPM shows that the LSPM nominal maximum size ( N MS) should be larger than 26.5 mm, and the NMS sieve passing percentage should be greater than 50%. Through experiments and calculations on the volume properties of the aggregate, the range of aggregate gradation curve of LSPM was given. In terms of asphalt binder's normalized test results, MAC-70 and SBS modified asphalt were selected as the asphalt binders. The applicability of large scale Marshall Method and gyratory compaction method to shape specimens was investigated. Based on the asphalt mixture performance evaluation, the optimum asphalt content range (3.1%-3.6%), the bitumen film's thickness range (13-16 μm) and the air void range (13%-18 %) were recommended. Finally, LSPM was tested by the laboratory performance tests including rutting resistance test, fatigue test and water stability test. The theoretic and practical analysis shows that LSPM has a good performance on water permeability, rutting resistance and reflection crack resistance.展开更多
The pavement performance of epoxy resin modified asphalt mixtures was investigated by the Marshall test, the indirect tensile test, the rutting test, the three-pointed bending test and the composite beam fatigue test....The pavement performance of epoxy resin modified asphalt mixtures was investigated by the Marshall test, the indirect tensile test, the rutting test, the three-pointed bending test and the composite beam fatigue test. In comparison with the performance of epoxy resin modified asphalt mixtures, the performance of stone matrix asphalt mixtures (SMA10) was also investigated. The rutting test and composite beam fatigue test results show that the epoxy resin modified asphalt mixtures can improve permanent deformation and fatigue characteristics. They also show lower temperature susceptibility and greater resistance to moisture damage compared to the SMA10. Findings from the research indicate that the epoxy resin modified asphalt mixture provides an optional material for the pavement of long-span steel bridges in China due to profound performance and economic advantages.展开更多
In recent years,the temperature-adjusted asphalt pavement has been an extensive concern by scholars in various countries,and this pavement can reduce temperaturerelated diseases.In this study,the shaped composite phas...In recent years,the temperature-adjusted asphalt pavement has been an extensive concern by scholars in various countries,and this pavement can reduce temperaturerelated diseases.In this study,the shaped composite phase change materials(CPCMs)were successfully synthesized by two processes,which are vacuum impregnation and epoxy curing.Firstly,the applicability of CPCMs in asphalt mixtures was evaluated by microscopic characterization,chemical compatibility,thermal properties,durability,and leakage stability.Secondly,CPCMs were applied to the asphalt mixture to evaluate its temperatureadjusted characteristics and pavement performance.Finally,the performance of the temperature-adjusted asphalt mixture was analyzed by integrating all factors.The research shows that the prepared CPCMs have excellent thermal properties and durability,the phase transition temperature is 48.93℃,and the phase transition enthalpy is 106.5 J/g,which fully meets the requirements for use in pavement.The temperature-adjusted asphalt mixture could alleviate the occurrence of extreme temperature,which was 4.9℃lower than the conventional mixture.The pavement performance of the temperatureadjusted asphalt mixture can meet the specified standards for humid areas.Considering the factors,the recommended amount of CPCMs is 1.5%.The research results provide a basis for the promotion of temperature-adjusted asphalt pavement and effectively support the development of pavement engineering technology.展开更多
To use many asbestos tailings collected in Ya-Lu highway,and to explore the feasibility of using asbestos tailings as aggregates in common asphalt mixtures,and properties of some asphalt mixtures were evaluated as wel...To use many asbestos tailings collected in Ya-Lu highway,and to explore the feasibility of using asbestos tailings as aggregates in common asphalt mixtures,and properties of some asphalt mixtures were evaluated as well.X-ray diffraction (XRD),X-ray fluorescent (XRF),and atomic absorption spectrophotometry (AAS) were employed to determine the solid waste content of copper,zinc,lead,and cadmium.Volume properties and pavement performances of AC-25 asphalt mixture with asbestos tailings were also evaluated compared with those with basalt as aggregates.XRD and XRF measurement results infer that asbestos tailing is an excellent road material.Volume properties of AC-25 asphalt mixture with asbestos tailings satisfied the related specifications.No heavy metals and toxic pollution were detected in AAS test and the value of pH test is 8.23,which is help to the adhesion with asphalt in the asphalt concrete.When compared with basalt,high temperature property and the resistance to low temperature cracking of AC-25 asphalt mixture was improved by using asbestos tailings as aggregates.In-service AC-25 asphalt pavement with asbestos tailings also presented excellent performance and British Pendulum Number (BPN) coefficient of surface.展开更多
Low temperature cracking has become one of the important factors that diminish asphalt pavement's ride quality and service life.Especially in cold region,cracking caused by low temperature is the main distress for...Low temperature cracking has become one of the important factors that diminish asphalt pavement's ride quality and service life.Especially in cold region,cracking caused by low temperature is the main distress form.This paper discussed the effect of aggregate gradation on the low temperature performance in asphalt paving mixtures.A total of 11 asphalt mixtures with 11 different aggregate gradations and one asphalt binder content were studied.Volumetric properties of the coarse aggregate and asphalt mixtures showed aggregate grading has a significant impact on the degree of aggregate interlock in asphalt mixtures.A trend is existed in the low temperature performance with the change of gradation.With the aid of mathematic statistics,it indicates gradation affects the low temperature performance significantly.The findings also indicate the relationship between the degree of aggregate interlock in asphalt mixtures and the low temperature performance:With the stone-to-stone contact developed,the mixture has a high energy to resist contract and deformation at low temperature.The properties of fine aggregate and asphalt play an important part in resisting low temperature cracking in floating structure.But it provides lower energy to resist low temperature cracking compared to the skeleton structure.展开更多
In order to improve the high temperature stability and low temperature cracking resistance of asphalt mixtures, two varieties of admixtures (anti-rutting agent and lignin fiber) were selected and then combined. This...In order to improve the high temperature stability and low temperature cracking resistance of asphalt mixtures, two varieties of admixtures (anti-rutting agent and lignin fiber) were selected and then combined. This is called double-mixture technology. A series of tests about pavement performance of base asphalt mixtures and asphalt mixtures with admixture of anti-rutting agent or lignin fiber were conducted. Meanwhile sensitivity an- alyses were used to study the influence of three factors (i.e., asphalt grade, aggregate type and gradation) on the high and low temperature performance and water stability of said asphalt mixtures. Test results indicated that the dynamic stability, residual stability, TSR and low temperature failure strain of asphalt mixtures have increased significantly with the additions of 0.40% anti-rutting agent and 0.36% lignin fiber. These results show that the high and low temperature and water stabilities of asphalt mixtures improve obviously. This supports the beneficial comprehensive effect of the double admixture. The problem of improving the asphalt mixtures performance with a single admixture is solved, in addition to also improving other pavement performance. Based on the sensitivity analysis, the most influential factors of dynamic stability, low temperature failure strain and TSR are the gradation, followed by asphalt grade and aggregate type.展开更多
文摘To discuss the pavement performance of basalt fiber-modified asphalt mixtures,the optimum dosages of asphalt and fibers are studied by the Marshall test and the rutting test.The results demonstrate that the optimum dosages of asphalt and fibers are 4.63% and 0.3%,respectively.Then the pavement performances of basalt(polyester,xylogen)fiber-modified asphalt mixtures are investigated through high temperature stability tests,water stability tests and low temperature crack resistance tests.It indicates that the pavement performances of the fiber-modified asphalt mixtures such as rutting dynamic stability,freezing splitting tensile strength,low temperature crack resistance and so on are improved compared with control asphalt mixture.The results show that the pavement performances of asphalt mixtures can be improved by fiber-modifiers.Besides,the improvement effects of basalt fiber are superior to polyester fiber and xylogen fiber.
文摘Based on the analysis of the main failures discovered in pavement on steel deck plate and the demanding service condition of the pavement on steel deck, high-temperature rutting test, low-temperature bending test and controlled stress flexural fatigue test are used to study the performance of asphalt mixtures modified by epoxy resin including high-temperature stability, low-temperature cracking-resistance, and fatigue cracking-resistance, which are served to evaluate the modification effect of epoxy resin of different contents. With the addition of epoxy resin, all the three performances are improved greatly. However, when the amount of epoxy resin added is over a certain value, the modification effect will be stable with no extra benefit detected. Finally, in terms of the properties of the three respects, 20%, 30%, 30% are given separately as the proposal adding contents.
文摘Design method for large stone porous asphalt mixtures (LSPM) was analyzed to avoid the early distresses of semi-rigid asphalt pavements. Based on stone-to-stone skeleton structure concept, processes of LSPM gradation design was given. The gradation composite design for LSPM shows that the LSPM nominal maximum size ( N MS) should be larger than 26.5 mm, and the NMS sieve passing percentage should be greater than 50%. Through experiments and calculations on the volume properties of the aggregate, the range of aggregate gradation curve of LSPM was given. In terms of asphalt binder's normalized test results, MAC-70 and SBS modified asphalt were selected as the asphalt binders. The applicability of large scale Marshall Method and gyratory compaction method to shape specimens was investigated. Based on the asphalt mixture performance evaluation, the optimum asphalt content range (3.1%-3.6%), the bitumen film's thickness range (13-16 μm) and the air void range (13%-18 %) were recommended. Finally, LSPM was tested by the laboratory performance tests including rutting resistance test, fatigue test and water stability test. The theoretic and practical analysis shows that LSPM has a good performance on water permeability, rutting resistance and reflection crack resistance.
基金The National Natural Science Foundation of China(No50578038)the PhDPrograms Foundation of Ministry of Education of China (No20050286008)
文摘The pavement performance of epoxy resin modified asphalt mixtures was investigated by the Marshall test, the indirect tensile test, the rutting test, the three-pointed bending test and the composite beam fatigue test. In comparison with the performance of epoxy resin modified asphalt mixtures, the performance of stone matrix asphalt mixtures (SMA10) was also investigated. The rutting test and composite beam fatigue test results show that the epoxy resin modified asphalt mixtures can improve permanent deformation and fatigue characteristics. They also show lower temperature susceptibility and greater resistance to moisture damage compared to the SMA10. Findings from the research indicate that the epoxy resin modified asphalt mixture provides an optional material for the pavement of long-span steel bridges in China due to profound performance and economic advantages.
基金supported by the National Natural Science Foundation of China(52174237,51704040)Science Foundation for Outstanding Youth of Hunan Province(2022JJ10051)+3 种基金Excellent Early Career Scientists from Germany(GZ1717)Science and Technology Project of Changsha-Outstanding Innovative Youth(kq2305020)Guangdong Provincial Key Laboratory of Modern Civil Engineering Technology(2021B1212040003)Postgraduate Scientific Research Innovation Project of Hunan Province(CX20230851,QL20230205)。
文摘In recent years,the temperature-adjusted asphalt pavement has been an extensive concern by scholars in various countries,and this pavement can reduce temperaturerelated diseases.In this study,the shaped composite phase change materials(CPCMs)were successfully synthesized by two processes,which are vacuum impregnation and epoxy curing.Firstly,the applicability of CPCMs in asphalt mixtures was evaluated by microscopic characterization,chemical compatibility,thermal properties,durability,and leakage stability.Secondly,CPCMs were applied to the asphalt mixture to evaluate its temperatureadjusted characteristics and pavement performance.Finally,the performance of the temperature-adjusted asphalt mixture was analyzed by integrating all factors.The research shows that the prepared CPCMs have excellent thermal properties and durability,the phase transition temperature is 48.93℃,and the phase transition enthalpy is 106.5 J/g,which fully meets the requirements for use in pavement.The temperature-adjusted asphalt mixture could alleviate the occurrence of extreme temperature,which was 4.9℃lower than the conventional mixture.The pavement performance of the temperatureadjusted asphalt mixture can meet the specified standards for humid areas.Considering the factors,the recommended amount of CPCMs is 1.5%.The research results provide a basis for the promotion of temperature-adjusted asphalt pavement and effectively support the development of pavement engineering technology.
基金Funded by the Western Region Transport Development Science and Technology Program (200731800003)
文摘To use many asbestos tailings collected in Ya-Lu highway,and to explore the feasibility of using asbestos tailings as aggregates in common asphalt mixtures,and properties of some asphalt mixtures were evaluated as well.X-ray diffraction (XRD),X-ray fluorescent (XRF),and atomic absorption spectrophotometry (AAS) were employed to determine the solid waste content of copper,zinc,lead,and cadmium.Volume properties and pavement performances of AC-25 asphalt mixture with asbestos tailings were also evaluated compared with those with basalt as aggregates.XRD and XRF measurement results infer that asbestos tailing is an excellent road material.Volume properties of AC-25 asphalt mixture with asbestos tailings satisfied the related specifications.No heavy metals and toxic pollution were detected in AAS test and the value of pH test is 8.23,which is help to the adhesion with asphalt in the asphalt concrete.When compared with basalt,high temperature property and the resistance to low temperature cracking of AC-25 asphalt mixture was improved by using asbestos tailings as aggregates.In-service AC-25 asphalt pavement with asbestos tailings also presented excellent performance and British Pendulum Number (BPN) coefficient of surface.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50778057)the Research Fund for the Doctoral Program of Higher Education(Grant No.20060213002)
文摘Low temperature cracking has become one of the important factors that diminish asphalt pavement's ride quality and service life.Especially in cold region,cracking caused by low temperature is the main distress form.This paper discussed the effect of aggregate gradation on the low temperature performance in asphalt paving mixtures.A total of 11 asphalt mixtures with 11 different aggregate gradations and one asphalt binder content were studied.Volumetric properties of the coarse aggregate and asphalt mixtures showed aggregate grading has a significant impact on the degree of aggregate interlock in asphalt mixtures.A trend is existed in the low temperature performance with the change of gradation.With the aid of mathematic statistics,it indicates gradation affects the low temperature performance significantly.The findings also indicate the relationship between the degree of aggregate interlock in asphalt mixtures and the low temperature performance:With the stone-to-stone contact developed,the mixture has a high energy to resist contract and deformation at low temperature.The properties of fine aggregate and asphalt play an important part in resisting low temperature cracking in floating structure.But it provides lower energy to resist low temperature cracking compared to the skeleton structure.
基金funded by the National Natural Science Foundation of China(No.51108038 and No.51108039)the Special Fund for Basic Scientific Research of Central Colleges,Chang'an University(310821152004)Shaanxi Science and Technology Research Development Project(No.2013KJXX94 and No.2013KW24)
文摘In order to improve the high temperature stability and low temperature cracking resistance of asphalt mixtures, two varieties of admixtures (anti-rutting agent and lignin fiber) were selected and then combined. This is called double-mixture technology. A series of tests about pavement performance of base asphalt mixtures and asphalt mixtures with admixture of anti-rutting agent or lignin fiber were conducted. Meanwhile sensitivity an- alyses were used to study the influence of three factors (i.e., asphalt grade, aggregate type and gradation) on the high and low temperature performance and water stability of said asphalt mixtures. Test results indicated that the dynamic stability, residual stability, TSR and low temperature failure strain of asphalt mixtures have increased significantly with the additions of 0.40% anti-rutting agent and 0.36% lignin fiber. These results show that the high and low temperature and water stabilities of asphalt mixtures improve obviously. This supports the beneficial comprehensive effect of the double admixture. The problem of improving the asphalt mixtures performance with a single admixture is solved, in addition to also improving other pavement performance. Based on the sensitivity analysis, the most influential factors of dynamic stability, low temperature failure strain and TSR are the gradation, followed by asphalt grade and aggregate type.