In this paper, the superhydrophobic polyurethane sponge(SS-PU) was facilely fabricated by etching with Jones reagent to bind the nanoparticles of Ni-Co double layered oxides(LDOs) on the surface, and following modific...In this paper, the superhydrophobic polyurethane sponge(SS-PU) was facilely fabricated by etching with Jones reagent to bind the nanoparticles of Ni-Co double layered oxides(LDOs) on the surface, and following modification with n-dodecyl mercaptan(DDT). This method provides a new strategy to fabricate superhydrophobic PU sponge with a water contact angle of 157° for absorbing oil with low cost and in large scale. It exhibits the strong absorption capacity and highly selective characteristic for various kinds of oils which can be recycled by simple squeezing. Besides, the as-prepared sponge can deal with the floating and underwater oils, indicating its application value in handling oil spills and domestic oily wastewater. The good self-cleaning ability shows the potential to clear the pollutants due to the ultralow adhesion to water. Especially, the most important point is that the superhydrophobic sponge can continuously and effectively separate the oil/water mixture against the condition of turbulent disturbance by using our designed device system, which exhibit its good superhydrophobicity, strong stability.Furthermore, the SS-PU still maintained stable absorption performance after 150 cycle tests without losing capacity obviously, showing excellent durability in long-term operation and significant potential as an efficient absorbent in large-scale dispose of oily water.展开更多
Layered double hydroxides(LDHs)have been shown to be effective adsorbents for boron.However,solid-liquid separation is still a problem when separating boron from industrial radioactive waste liquid.In this research,th...Layered double hydroxides(LDHs)have been shown to be effective adsorbents for boron.However,solid-liquid separation is still a problem when separating boron from industrial radioactive waste liquid.In this research,three types of Mg-Al-LDHs including Mg-Al-LDH(NO_(3)^(-)),Mg-Al-LDH(Cl^(-))and Mg-Al-LDH(SO_(4)^(2-))were applied to adsorb boron,and moreover sodium dodecylbenzenesulfonate(SDBS)was used to float the LDH particles from aqueous solution after boron adsorption.The results showed that 60 min was sufficient for the equilibrium adsorption of the three LDHs.The boron adsorption capacity of three LDHs was determined as follows:Mg-Al-LDH(NO_(3)^(-))>Mg-Al-LDH(Cl^(-))>Mg-Al-LDH(SO_(4)^(2-)),and was 2.0,0.98 and 0.2 mmol·g^(-1),each ranging from 0 to 80 mmol·L^(-1)with the initial boron concentration.The efficiency of boron removal by Mg-Al-LDH(NO_(3)^(-))and SDBS can reach up to 89.7%.Furthermore,the boron flotation mechanism of SDBS and LDHs has been studied,since SDBS as a flotation agent can react with LDHs and penetrate into the interlayer of LDHs in addition to electrostatic attraction.Therefore,LDHs in solution can be floated onto the foam layer to be separated from the solution,and the clarified solution was obtained.The method is simple and promising for boron removal from aqueous solution.展开更多
Global seismicity catalogs are sufficient for characterizing double seismic zones (DSZs) in subducting slab and facilitate to estimate layer separation without inconsistent uncertainties as local catalogs. Previous ...Global seismicity catalogs are sufficient for characterizing double seismic zones (DSZs) in subducting slab and facilitate to estimate layer separation without inconsistent uncertainties as local catalogs. Previous studies have shown the correlation between DSZs layer separation and plate age while correlation for those younger than -60 Ma is suspicious. The lacking of DSZs with layer separation less than 10 km further makes it difficult to precisely estimate such correlation. Thus, we incorporate eight DSZs data determined through local seismicity into globally-determined dataset and reexamine such correlation. The best fitting results show that both a linear model and a square root of plate age can mathematically fit the layer separation well. However, it is difficult to distinguish these two models when plate age is greater than -20 Ma since their difference is less than 2 km. However, if extrapolation is possible, both models should provide physical information that DSZs will not form if there is no subducting lithosphere. As a result, the DSZs cannot be produced until the oceanic lithospheric age becomes greater than 0.9 Ma in the square root model while the linear model gives a misleading result. As such the square root model demonstrates the relationship physically better than the linear one, it still needs further test in the future with more available data, nevertheless, our study might also provide evidence for the suggestion that the plate age is a primary control factor of the DSZs geometry as well as the subducting process which disregards any local tectonic stresses.展开更多
Industrial thin-film composite(TFC)membranes achieve superior gas separation properties from high-performance selective layer materials,while the success of membrane technology relies on high-performance gutter layers...Industrial thin-film composite(TFC)membranes achieve superior gas separation properties from high-performance selective layer materials,while the success of membrane technology relies on high-performance gutter layers to achieve production scalability and low-cost manufacturing.However,the current literature predominantly focuses on the design of polymer architectures to obtain high permeability and selectivity,while the art of fabricating gutter layers is usually safeguarded by industrial manufacturers and appears lackluster to academic researchers.This is the first report aiming to provide a comprehensive and critical review of state-of-the-art gutter layer materials and their design and modification to enable TFC membranes with superior separation performance.We first elucidate the importance of the gutter layer on membrane performance through modeling and experimental results.Then various gutter layer materials used to obtain high-performance composite membranes are critically reviewed,and the strategies to improve their compatibility with the selective layer are highlighted,such as oxygen plasma treatment,polydopamine deposition,and surface grafting.Finally,we present the opportunities of the gutter layer design for practical applications.展开更多
Laminar boundary layer (BL), under adverse pressure gradient, can separate. The separated shear layer reattaches to form a laminar separation bubble. Such bubbles are usually observed on gas turbine blades, on low Rey...Laminar boundary layer (BL), under adverse pressure gradient, can separate. The separated shear layer reattaches to form a laminar separation bubble. Such bubbles are usually observed on gas turbine blades, on low Reynolds number wings and close to the leading edges of airfoils. Presence of bubbles has a weakening effect on the performance of a fluid device. The understanding of the prevailing mechanism of the separation bubble and ways to control it are essential for the efficient design of these devices. This is due to the significance of drag reduction in these various aerodynamic devices, such as gas turbines, re-entry space vehicles and airfoils. This study introduces a two-dimensional mathematical formulation of bubble formation after flow separation. The laminar BL equations with appropriate boundary conditions are dimensionalized using the Falkner-Skan transformation. Additionally, using the Keller-box method, the nonlinear system of partial differential equations (PDEs) is numerically solved. This study presents preliminary numerical results of bubble formation in low Mach numbers. These results reveal that after separation, a laminar bubble is formed in all studied cases, for Mach numbers, M = 0.2, 0.33 and 1.0. The flow after separation reverses close to the wall and finally reattaches downstream, in a new location. As the Mach number increases, this effect is more intense. After reattachment, the BL is again established in a lower energy level and the velocity field is substantially reduced, for all cases.展开更多
Electric double-layer field effect experiments were performed on ultrathin films of La0.325Pr0.3Ca0.375MnO3, which is noted for its micrometer-scale phase separation. A clear change of resistance up to 220% was observ...Electric double-layer field effect experiments were performed on ultrathin films of La0.325Pr0.3Ca0.375MnO3, which is noted for its micrometer-scale phase separation. A clear change of resistance up to 220% was observed and the characteristic metal-insulator transition temperature Tp was also shifted. The changes of both the resistance and Tp, suggest that the electric field induced not only tuning of the carrier density but also rebalancing of the phase separation states. The change of the charge-ordered insulating phase fraction was estimated to be temperature dependent, and a maximum of 16% was achieved in the phase separation regime. This tuning effect was partially irreversible, which might be due to an oxygen vacancy migration that is driven by the huge applied electric field.展开更多
To control land surface subsidence caused the underground mineral exploitation and the catastrophic phenomena such as serious damage of buildings, waterbodies, cultivated lands, railways, bridges caused by land subsid...To control land surface subsidence caused the underground mineral exploitation and the catastrophic phenomena such as serious damage of buildings, waterbodies, cultivated lands, railways, bridges caused by land subsidence, bed separation grouting technology of overburden is put forward. To provide theoretical support for the technology, the characteristics and the mechanics mechanism of mining overburden from layer-split to formation of bed separation are studied. On the basis of elastic sheet board theory, calculation formula of rock sheet deflection is presented, and the mechanics criteria of the separation formation and the calculation formula of bed separation volume are set up. Finally, the applications and technics of bed separation grout technology of mining overburden to control land subsidence in china are introduced.展开更多
The developed process and theoretical achievement for the technology of controlling surface subsidence by grouting separated layer in overburden is summarized in this paper. The research progress of the technology is ...The developed process and theoretical achievement for the technology of controlling surface subsidence by grouting separated layer in overburden is summarized in this paper. The research progress of the technology is discussed synthetically on the basis of practice and research results obtained at coal mine of China in recent years. According to the development tendency of mining under buildings, water bodies and railroads and the properties of the technology, the future research direction is proposed.展开更多
Vibration energy harvesting is to transform the ambient mechanical energy to electricity. How to reduce the resonance frequency and improve the conversion efficiency is very important. In this paper, a layer-separated...Vibration energy harvesting is to transform the ambient mechanical energy to electricity. How to reduce the resonance frequency and improve the conversion efficiency is very important. In this paper, a layer-separated piezoelectric cantilever beam is proposed for the vibration energy harvester(VEH) for low-frequency and wide-bandwidth operation, which can transform the mechanical impact energy to electric energy. First,the electromechanical coupling equation is obtained by the Euler-Bernoulli beam theory.Based on the average method, the approximate analytical solution is derived and the voltage response is obtained. Furthermore, the physical prototype is fabricated, and the vibration experiment is conducted to validate the theoretical principle. The experimental results show that the maximum power of 0.445 μW of the layer-separated VEH is about3.11 times higher than that of the non-impact harvester when the excitation acceleration is 0.2 g. The operating frequency bandwidth can be widened by increasing the stiffness of the fundamental layer and decreasing the gap distance of the system. But the increasing of operating frequency bandwidth comes at the cost of reducing peak voltage. The theoretical simulation and the experimental results demonstrate good agreement which indicates that the proposed impact-driving VEH device has advantages for low-frequency and wide-bandwidth. The high performance provides great prospect to scavenge the vibration energy in environment.展开更多
The experimental investigation is conducted with LDV and hydrogen bubble technique in water flow. The shear layer thickness. the vorticity thickness. the maximulll value of turbulence intensities. the turbulent coher...The experimental investigation is conducted with LDV and hydrogen bubble technique in water flow. The shear layer thickness. the vorticity thickness. the maximulll value of turbulence intensities. the turbulent coherent structure. the variations of wall shear stress and the boundary layer shape factor are obtained. In the redevelopment region. the detailed analysis is first made for the streak structures in the near wall region and the turbulent boundary layer is formed at (x-xr) / h = 20.展开更多
Separated shear layer of blunt circular cylinder has been experimentally investigated for the Reynolds numbers (based on the diameter) ranging from 2.8 x 10(3) to 1.0 x 10(5), with emphasis on evolution of separated s...Separated shear layer of blunt circular cylinder has been experimentally investigated for the Reynolds numbers (based on the diameter) ranging from 2.8 x 10(3) to 1.0 x 10(5), with emphasis on evolution of separated shear layer, its structure and distribution of Reynolds shear stress and turbulence kinetic energy. The results demonstrate that laminar separated shear layer experiences 2 similar to 3 times vortex merging before it reattaches, and turbulence separated shear layer takes 5 similar to 6 times vortex merging. In addition, relationship between dimensionless initial frequencies of K-H instability and Reynolds numbers is identified, and reasons for the decay of turbulence kinetic energy and Reynolds shear stress in reattachment region are discussed.展开更多
Based on the research result on the strake-wing, when the size of a strakeis not large, there is a separation zone near the leading edge of the outwing of thestrake-wing at middle angles of attack. So the idea on sepa...Based on the research result on the strake-wing, when the size of a strakeis not large, there is a separation zone near the leading edge of the outwing of thestrake-wing at middle angles of attack. So the idea on separation control by rotating acone placed near the leading edge is presented. The cone surface consists of the part ofthe wing. The effect of rotating the cone on aerodynamic characteristics of thestrake-wing is investigated. The results show that a rotating surface could play an important role in controlling the flow separation for a 3-dimensional wing. For example,the relative increment in maximum lift coefficient attains 30%. The separation zone issuppressed to a certain extent.展开更多
A quasi-simultaneous viscous/inviscid interaction model and a new integral method are tried to predict twodimensional incompressible turbulent boundary-layer separating flows. The results are compared with experiment...A quasi-simultaneous viscous/inviscid interaction model and a new integral method are tried to predict twodimensional incompressible turbulent boundary-layer separating flows. The results are compared with experiments and other prediction.展开更多
The laser-ion acceleration from the ultra-short and ultra-intense laser-matter interactions attracts more and more interest nowadays. When a laser pulse interacts with a target, relativistic electrons are generated in...The laser-ion acceleration from the ultra-short and ultra-intense laser-matter interactions attracts more and more interest nowadays. When a laser pulse interacts with a target, relativistic electrons are generated in a period of few femtoseconds and driven away by the ponderomotive force, then a huge charge-separation field forms. In general cases, the ion acceleration is determined by this charge-separation field and the scale length of the plasma density. A general time-dependent solution is obtained to describe laser-plasma isothermal expansions into a vacuum, which is the fundamental theory of the laser-ion acceleration. It is adequate for non-quasi-neutral plasmas and different types of the scale length of the density gradient. The previous solutions are some special cases of our general solution. It is found that there exist both a compression layer of the ion velocity distribution and a potential well for sorue initial conditions. However, many unaccounted idiographic solutions, which may be used to reveal new mechanisms of ion acceleration, may be deduced from our general solutions.展开更多
The liquefied product of Salixpsammophila wood was separated by thin-layer chromatography (TLC) and column chromatography, and its structure was identified by nuclear magnetic resonance (NMR) spectra in our study....The liquefied product of Salixpsammophila wood was separated by thin-layer chromatography (TLC) and column chromatography, and its structure was identified by nuclear magnetic resonance (NMR) spectra in our study. The separation result indicates that the sample of liquefied S. psammophila contained at least two categories of components. The structure of the main components was guaiacyl C-1, C-2 of the hydroxyphenyl propane, i.e., the aromatic nucleus protons of lignin. Degradation and polycondensation reactions occurred when the S. psammophila wood was liquefied in phenol. Polycondensation reactions occurred among the depolymerization products from cellulose, the aromatic depolymerization products from lignin and the products of the displacement reactions between phenoxide ion and cellulose.展开更多
Sustainable processes for purifying water,capturing carbon,producing biofuels,operating fuel cells,and performing energy-efficient industrial separations will require next-generation membranes.Solvent-less fabrication...Sustainable processes for purifying water,capturing carbon,producing biofuels,operating fuel cells,and performing energy-efficient industrial separations will require next-generation membranes.Solvent-less fabrication for membranes not only eliminates potential environmental issues with organic solvents,but also solves the swelling problems that occur with delicate polymer substrates.Furthermore,the activation procedures often required for synthesizing microporous materials such as metal–organic frameworks(MOFs)can be reduced when solvent-less vapor-phase approaches are employed.This perspective covers several vacuum deposition processes,including initiated chemical vapor deposition(iCVD),initiated plasma-enhanced chemical vapor deposition(iPECVD),solvent-less vapor deposition followed by in situ polymerization(SLIP),atomic layer deposition(ALD),and molecular layer deposition(MLD).These solvent-less vapor-phase methods are powerful in creating ultrathin selective layers for thin-film composite membranes and advantageous in conformally coating nanoscale pores for the precise modification of pore size and internal functionalities.The resulting membranes have shown promising performance for gas separation,nanofiltration,desalination,and water/oil separation.Further development of novel membrane materials and the scaling up of high-throughput reactors for solvent-less vapor-phase processes are necessary in order to make a real impact on the chemical industry in the future.展开更多
基金the financial support from National Key Research & Development Program of China (2017B0602702)。
文摘In this paper, the superhydrophobic polyurethane sponge(SS-PU) was facilely fabricated by etching with Jones reagent to bind the nanoparticles of Ni-Co double layered oxides(LDOs) on the surface, and following modification with n-dodecyl mercaptan(DDT). This method provides a new strategy to fabricate superhydrophobic PU sponge with a water contact angle of 157° for absorbing oil with low cost and in large scale. It exhibits the strong absorption capacity and highly selective characteristic for various kinds of oils which can be recycled by simple squeezing. Besides, the as-prepared sponge can deal with the floating and underwater oils, indicating its application value in handling oil spills and domestic oily wastewater. The good self-cleaning ability shows the potential to clear the pollutants due to the ultralow adhesion to water. Especially, the most important point is that the superhydrophobic sponge can continuously and effectively separate the oil/water mixture against the condition of turbulent disturbance by using our designed device system, which exhibit its good superhydrophobicity, strong stability.Furthermore, the SS-PU still maintained stable absorption performance after 150 cycle tests without losing capacity obviously, showing excellent durability in long-term operation and significant potential as an efficient absorbent in large-scale dispose of oily water.
基金financially supported by the National Natural Science Foundation of China(U20A20150)the National Key Research and Development Program of China(2018YFC1903802)+1 种基金the Youth Scientific Research Fund of Qinghai University(2022QGY-4)the Kunlun Talent Program of Qinghai Province。
文摘Layered double hydroxides(LDHs)have been shown to be effective adsorbents for boron.However,solid-liquid separation is still a problem when separating boron from industrial radioactive waste liquid.In this research,three types of Mg-Al-LDHs including Mg-Al-LDH(NO_(3)^(-)),Mg-Al-LDH(Cl^(-))and Mg-Al-LDH(SO_(4)^(2-))were applied to adsorb boron,and moreover sodium dodecylbenzenesulfonate(SDBS)was used to float the LDH particles from aqueous solution after boron adsorption.The results showed that 60 min was sufficient for the equilibrium adsorption of the three LDHs.The boron adsorption capacity of three LDHs was determined as follows:Mg-Al-LDH(NO_(3)^(-))>Mg-Al-LDH(Cl^(-))>Mg-Al-LDH(SO_(4)^(2-)),and was 2.0,0.98 and 0.2 mmol·g^(-1),each ranging from 0 to 80 mmol·L^(-1)with the initial boron concentration.The efficiency of boron removal by Mg-Al-LDH(NO_(3)^(-))and SDBS can reach up to 89.7%.Furthermore,the boron flotation mechanism of SDBS and LDHs has been studied,since SDBS as a flotation agent can react with LDHs and penetrate into the interlayer of LDHs in addition to electrostatic attraction.Therefore,LDHs in solution can be floated onto the foam layer to be separated from the solution,and the clarified solution was obtained.The method is simple and promising for boron removal from aqueous solution.
基金supported by the National Natural Science Foundation of China(grant Nos.40874047 and 40574047)
文摘Global seismicity catalogs are sufficient for characterizing double seismic zones (DSZs) in subducting slab and facilitate to estimate layer separation without inconsistent uncertainties as local catalogs. Previous studies have shown the correlation between DSZs layer separation and plate age while correlation for those younger than -60 Ma is suspicious. The lacking of DSZs with layer separation less than 10 km further makes it difficult to precisely estimate such correlation. Thus, we incorporate eight DSZs data determined through local seismicity into globally-determined dataset and reexamine such correlation. The best fitting results show that both a linear model and a square root of plate age can mathematically fit the layer separation well. However, it is difficult to distinguish these two models when plate age is greater than -20 Ma since their difference is less than 2 km. However, if extrapolation is possible, both models should provide physical information that DSZs will not form if there is no subducting lithosphere. As a result, the DSZs cannot be produced until the oceanic lithospheric age becomes greater than 0.9 Ma in the square root model while the linear model gives a misleading result. As such the square root model demonstrates the relationship physically better than the linear one, it still needs further test in the future with more available data, nevertheless, our study might also provide evidence for the suggestion that the plate age is a primary control factor of the DSZs geometry as well as the subducting process which disregards any local tectonic stresses.
基金support from the U.S.Department of Energy National Energy Technology Laboratory(DE-FE0031736)the New York State Foundation for Science,Technology and Innovation(NYSTAR).
文摘Industrial thin-film composite(TFC)membranes achieve superior gas separation properties from high-performance selective layer materials,while the success of membrane technology relies on high-performance gutter layers to achieve production scalability and low-cost manufacturing.However,the current literature predominantly focuses on the design of polymer architectures to obtain high permeability and selectivity,while the art of fabricating gutter layers is usually safeguarded by industrial manufacturers and appears lackluster to academic researchers.This is the first report aiming to provide a comprehensive and critical review of state-of-the-art gutter layer materials and their design and modification to enable TFC membranes with superior separation performance.We first elucidate the importance of the gutter layer on membrane performance through modeling and experimental results.Then various gutter layer materials used to obtain high-performance composite membranes are critically reviewed,and the strategies to improve their compatibility with the selective layer are highlighted,such as oxygen plasma treatment,polydopamine deposition,and surface grafting.Finally,we present the opportunities of the gutter layer design for practical applications.
文摘Laminar boundary layer (BL), under adverse pressure gradient, can separate. The separated shear layer reattaches to form a laminar separation bubble. Such bubbles are usually observed on gas turbine blades, on low Reynolds number wings and close to the leading edges of airfoils. Presence of bubbles has a weakening effect on the performance of a fluid device. The understanding of the prevailing mechanism of the separation bubble and ways to control it are essential for the efficient design of these devices. This is due to the significance of drag reduction in these various aerodynamic devices, such as gas turbines, re-entry space vehicles and airfoils. This study introduces a two-dimensional mathematical formulation of bubble formation after flow separation. The laminar BL equations with appropriate boundary conditions are dimensionalized using the Falkner-Skan transformation. Additionally, using the Keller-box method, the nonlinear system of partial differential equations (PDEs) is numerically solved. This study presents preliminary numerical results of bubble formation in low Mach numbers. These results reveal that after separation, a laminar bubble is formed in all studied cases, for Mach numbers, M = 0.2, 0.33 and 1.0. The flow after separation reverses close to the wall and finally reattaches downstream, in a new location. As the Mach number increases, this effect is more intense. After reattachment, the BL is again established in a lower energy level and the velocity field is substantially reduced, for all cases.
基金supported by the National Basic Research Program of China(Grant Nos.2011CBA00106 and 2014CB921401)the National Natural Science Foundation of China(Grant Nos.11174342,9131208,and 11374344)
文摘Electric double-layer field effect experiments were performed on ultrathin films of La0.325Pr0.3Ca0.375MnO3, which is noted for its micrometer-scale phase separation. A clear change of resistance up to 220% was observed and the characteristic metal-insulator transition temperature Tp was also shifted. The changes of both the resistance and Tp, suggest that the electric field induced not only tuning of the carrier density but also rebalancing of the phase separation states. The change of the charge-ordered insulating phase fraction was estimated to be temperature dependent, and a maximum of 16% was achieved in the phase separation regime. This tuning effect was partially irreversible, which might be due to an oxygen vacancy migration that is driven by the huge applied electric field.
基金Foundation item:Key Project of Natural Seien6e Foundation of China(No:50434020 and NO:50274044)Key Project of Science Foundation of Shandong Province(No:Z20031:02)
文摘To control land surface subsidence caused the underground mineral exploitation and the catastrophic phenomena such as serious damage of buildings, waterbodies, cultivated lands, railways, bridges caused by land subsidence, bed separation grouting technology of overburden is put forward. To provide theoretical support for the technology, the characteristics and the mechanics mechanism of mining overburden from layer-split to formation of bed separation are studied. On the basis of elastic sheet board theory, calculation formula of rock sheet deflection is presented, and the mechanics criteria of the separation formation and the calculation formula of bed separation volume are set up. Finally, the applications and technics of bed separation grout technology of mining overburden to control land subsidence in china are introduced.
文摘The developed process and theoretical achievement for the technology of controlling surface subsidence by grouting separated layer in overburden is summarized in this paper. The research progress of the technology is discussed synthetically on the basis of practice and research results obtained at coal mine of China in recent years. According to the development tendency of mining under buildings, water bodies and railroads and the properties of the technology, the future research direction is proposed.
基金Project supported by the National Natural Science Foundation of China(Nos.11672008,11702188,and 1832002)
文摘Vibration energy harvesting is to transform the ambient mechanical energy to electricity. How to reduce the resonance frequency and improve the conversion efficiency is very important. In this paper, a layer-separated piezoelectric cantilever beam is proposed for the vibration energy harvester(VEH) for low-frequency and wide-bandwidth operation, which can transform the mechanical impact energy to electric energy. First,the electromechanical coupling equation is obtained by the Euler-Bernoulli beam theory.Based on the average method, the approximate analytical solution is derived and the voltage response is obtained. Furthermore, the physical prototype is fabricated, and the vibration experiment is conducted to validate the theoretical principle. The experimental results show that the maximum power of 0.445 μW of the layer-separated VEH is about3.11 times higher than that of the non-impact harvester when the excitation acceleration is 0.2 g. The operating frequency bandwidth can be widened by increasing the stiffness of the fundamental layer and decreasing the gap distance of the system. But the increasing of operating frequency bandwidth comes at the cost of reducing peak voltage. The theoretical simulation and the experimental results demonstrate good agreement which indicates that the proposed impact-driving VEH device has advantages for low-frequency and wide-bandwidth. The high performance provides great prospect to scavenge the vibration energy in environment.
文摘The experimental investigation is conducted with LDV and hydrogen bubble technique in water flow. The shear layer thickness. the vorticity thickness. the maximulll value of turbulence intensities. the turbulent coherent structure. the variations of wall shear stress and the boundary layer shape factor are obtained. In the redevelopment region. the detailed analysis is first made for the streak structures in the near wall region and the turbulent boundary layer is formed at (x-xr) / h = 20.
基金The proJect supported by the National Natural Science Foundation of Chinathe Key Laboratory for Hydrodynamics of NDCST
文摘Separated shear layer of blunt circular cylinder has been experimentally investigated for the Reynolds numbers (based on the diameter) ranging from 2.8 x 10(3) to 1.0 x 10(5), with emphasis on evolution of separated shear layer, its structure and distribution of Reynolds shear stress and turbulence kinetic energy. The results demonstrate that laminar separated shear layer experiences 2 similar to 3 times vortex merging before it reattaches, and turbulence separated shear layer takes 5 similar to 6 times vortex merging. In addition, relationship between dimensionless initial frequencies of K-H instability and Reynolds numbers is identified, and reasons for the decay of turbulence kinetic energy and Reynolds shear stress in reattachment region are discussed.
文摘Based on the research result on the strake-wing, when the size of a strakeis not large, there is a separation zone near the leading edge of the outwing of thestrake-wing at middle angles of attack. So the idea on separation control by rotating acone placed near the leading edge is presented. The cone surface consists of the part ofthe wing. The effect of rotating the cone on aerodynamic characteristics of thestrake-wing is investigated. The results show that a rotating surface could play an important role in controlling the flow separation for a 3-dimensional wing. For example,the relative increment in maximum lift coefficient attains 30%. The separation zone issuppressed to a certain extent.
文摘A quasi-simultaneous viscous/inviscid interaction model and a new integral method are tried to predict twodimensional incompressible turbulent boundary-layer separating flows. The results are compared with experiments and other prediction.
基金supported by the Key Project of Chinese National Programs for Fundamental Research (973 Program) (No.2006CB806004)National Natural Science Foundation of China (No.10834008)
文摘The laser-ion acceleration from the ultra-short and ultra-intense laser-matter interactions attracts more and more interest nowadays. When a laser pulse interacts with a target, relativistic electrons are generated in a period of few femtoseconds and driven away by the ponderomotive force, then a huge charge-separation field forms. In general cases, the ion acceleration is determined by this charge-separation field and the scale length of the plasma density. A general time-dependent solution is obtained to describe laser-plasma isothermal expansions into a vacuum, which is the fundamental theory of the laser-ion acceleration. It is adequate for non-quasi-neutral plasmas and different types of the scale length of the density gradient. The previous solutions are some special cases of our general solution. It is found that there exist both a compression layer of the ion velocity distribution and a potential well for sorue initial conditions. However, many unaccounted idiographic solutions, which may be used to reveal new mechanisms of ion acceleration, may be deduced from our general solutions.
基金supported by grants 200508010603 and 200711020504 from the key pro-ject of the Natural Science Foundation of the InnerMongolia Autonomous Region
文摘The liquefied product of Salixpsammophila wood was separated by thin-layer chromatography (TLC) and column chromatography, and its structure was identified by nuclear magnetic resonance (NMR) spectra in our study. The separation result indicates that the sample of liquefied S. psammophila contained at least two categories of components. The structure of the main components was guaiacyl C-1, C-2 of the hydroxyphenyl propane, i.e., the aromatic nucleus protons of lignin. Degradation and polycondensation reactions occurred when the S. psammophila wood was liquefied in phenol. Polycondensation reactions occurred among the depolymerization products from cellulose, the aromatic depolymerization products from lignin and the products of the displacement reactions between phenoxide ion and cellulose.
基金Zhejiang University,the research grant from the State Key Laboratory of Chemical Engineering(SKL-ChE-19T04)the funding support from the Institute of Zhejiang University-Quzhou(IZQ2019-KJ-011)Junjie Zhao also acknowledges the funding from the National Natural Science Foundation of China(21908194 and 21938011).
文摘Sustainable processes for purifying water,capturing carbon,producing biofuels,operating fuel cells,and performing energy-efficient industrial separations will require next-generation membranes.Solvent-less fabrication for membranes not only eliminates potential environmental issues with organic solvents,but also solves the swelling problems that occur with delicate polymer substrates.Furthermore,the activation procedures often required for synthesizing microporous materials such as metal–organic frameworks(MOFs)can be reduced when solvent-less vapor-phase approaches are employed.This perspective covers several vacuum deposition processes,including initiated chemical vapor deposition(iCVD),initiated plasma-enhanced chemical vapor deposition(iPECVD),solvent-less vapor deposition followed by in situ polymerization(SLIP),atomic layer deposition(ALD),and molecular layer deposition(MLD).These solvent-less vapor-phase methods are powerful in creating ultrathin selective layers for thin-film composite membranes and advantageous in conformally coating nanoscale pores for the precise modification of pore size and internal functionalities.The resulting membranes have shown promising performance for gas separation,nanofiltration,desalination,and water/oil separation.Further development of novel membrane materials and the scaling up of high-throughput reactors for solvent-less vapor-phase processes are necessary in order to make a real impact on the chemical industry in the future.