In order to acquire the dynamic characteristics of joint surfaces of complex assembled structures, a novel parameter identification technique was adopted. Virtual materials were introduced to simulate the stiffness an...In order to acquire the dynamic characteristics of joint surfaces of complex assembled structures, a novel parameter identification technique was adopted. Virtual materials were introduced to simulate the stiffness and damping features of the joint surfaces between two different structures. Properties of the virtual materials, including elasticity modulus, density, and Poisson ratio, were gradually modified. At last, FEM modal results of the assembled structures are consistent with the experimental ones. This proves the feasibility of the simulating method and paves a solid foundation of the further research of the dynamic simulation.展开更多
This paper includes descriptions of the stress distribution regularities in the tight joint parts, regularities of the stress state changes in the contact region along coupling length, stress concentration factors, le...This paper includes descriptions of the stress distribution regularities in the tight joint parts, regularities of the stress state changes in the contact region along coupling length, stress concentration factors, levels of additional stresses caused by press fitting. Distributions of stress intensity, axial stress, contact pressure, tangent stress in parts and in contact zone along coupling length are considered. Calculation results obtained by three approaches: Lame relationships, FEM without considering assembly method, FEM with considering press fitting process are analyzed and compared. The adequacy of research carried out is confirmed.展开更多
Since most current seismic capacity evaluations of reinforced concrete (RC) frame structures are implemented by either static pushover analysis (PA) or dynamic time history analysis, with diverse settings of the p...Since most current seismic capacity evaluations of reinforced concrete (RC) frame structures are implemented by either static pushover analysis (PA) or dynamic time history analysis, with diverse settings of the plastic hinges (PHs) on such main structural components as columns, beams and walls, the complex behavior of shear failure at beam-column joints (BCJs) during major earthquakes is commonly neglected. This study proposes new nonlinear PA procedures that consider shear failure at BCJs and seek to assess the actual damage to RC structures. Based on the specifications of FEMA-356, a simplified joint model composed of two nonlinear cross struts placed diagonally over the location of the plastic hinge is established, allowing a sophisticated PA to be performed. To verify the validity of this method, the analytical results for the capacity curves and the failure mechanism derived from three different full-size RC frames are compared with the experimental measurements. By considering shear failure at BCJs, the proposed nonlinear analytical procedures can be used to estimate the structural behavior of RC frames, including seismic capacity and the progressive failure sequence of joints, in a precise and effective manner.展开更多
A beam-column joint of precast and partial steel reinforced concrete( PPSRC) is proposed for precast reinforced concrete frames. The PPSRC consists of partial steel and reinforced concrete. The partial steel is locate...A beam-column joint of precast and partial steel reinforced concrete( PPSRC) is proposed for precast reinforced concrete frames. The PPSRC consists of partial steel and reinforced concrete. The partial steel is located in the core joint region and the connections between concrete members. This paper presents an experimental study of a series of PPSRC specimens. These specimens are tested under low cyclic loading.Experimental results demonstrate that the bearing capacity of the PPSRC specimens is 3 times that of the ordinary reinforced concrete( RC) beam-column joints. The strength and stiffness degradation rates are slower compared with that of the RC beam-column joints. In addition,the strength of the core joint region and the connections is higher than other parts of the PPSRC specimens. Beam failure occurs firstly for the PPSRC specimens,followed by column failure and connections failure. The failure of the core joint region occurs finally.Test results show that the seismic performance of the PPSRC is better than that of the ordinary RC beam-column joints.展开更多
A set of new current sensing device is used to realize joint torque control based on current measurement in a precision assembly robot's third joint. The output torque's model of the joint's brushless DC m...A set of new current sensing device is used to realize joint torque control based on current measurement in a precision assembly robot's third joint. The output torque's model of the joint's brushless DC motor is founded. Disturbance factors and the compensated effect of the torque's closed loop based on current measurement are analyzed. Related simulations and experiments show that the system has good current tracking and anti-disturbances performance, which improve the force control performance of the robot in assembly.展开更多
This paper analyses the seismic performance of exterior beam-column joints strengthened with unconventional reinforcement detailing. The beam-column joint specimens were tested with reverse cyclic loading applied at t...This paper analyses the seismic performance of exterior beam-column joints strengthened with unconventional reinforcement detailing. The beam-column joint specimens were tested with reverse cyclic loading applied at the beam end. The samples were divided into two groups based on the joint reinforcement detailing. The first group (Group A) of three non-ductility specimens had joint detailing in accordance with the construction code of practice in India IS456-2000, and the second group (Group B) of three ductility specimens had joint reinforcement detailed as per IS13920-1993, with similar axial load cases as the first group. The experimental studies are proven with the analytical studies carried out by finite element models using ANSYS. The results show that the hysteresis simulation is satisfactory for both un-strengthened and ferrocement strengthened specimens. Furthermore, when ferrocement strengthening is employed, the strengthened beam-column joints exhibit better structural performance than the un-strengthened specimens of about 31.56% and 38.98 for DD-T1 and DD-T2 respectively. The analytical shear strength predictions were in line with the test results reported in the literature, thus adding confidence to the validity of the proposed models.展开更多
文摘In order to acquire the dynamic characteristics of joint surfaces of complex assembled structures, a novel parameter identification technique was adopted. Virtual materials were introduced to simulate the stiffness and damping features of the joint surfaces between two different structures. Properties of the virtual materials, including elasticity modulus, density, and Poisson ratio, were gradually modified. At last, FEM modal results of the assembled structures are consistent with the experimental ones. This proves the feasibility of the simulating method and paves a solid foundation of the further research of the dynamic simulation.
文摘This paper includes descriptions of the stress distribution regularities in the tight joint parts, regularities of the stress state changes in the contact region along coupling length, stress concentration factors, levels of additional stresses caused by press fitting. Distributions of stress intensity, axial stress, contact pressure, tangent stress in parts and in contact zone along coupling length are considered. Calculation results obtained by three approaches: Lame relationships, FEM without considering assembly method, FEM with considering press fitting process are analyzed and compared. The adequacy of research carried out is confirmed.
文摘Since most current seismic capacity evaluations of reinforced concrete (RC) frame structures are implemented by either static pushover analysis (PA) or dynamic time history analysis, with diverse settings of the plastic hinges (PHs) on such main structural components as columns, beams and walls, the complex behavior of shear failure at beam-column joints (BCJs) during major earthquakes is commonly neglected. This study proposes new nonlinear PA procedures that consider shear failure at BCJs and seek to assess the actual damage to RC structures. Based on the specifications of FEMA-356, a simplified joint model composed of two nonlinear cross struts placed diagonally over the location of the plastic hinge is established, allowing a sophisticated PA to be performed. To verify the validity of this method, the analytical results for the capacity curves and the failure mechanism derived from three different full-size RC frames are compared with the experimental measurements. By considering shear failure at BCJs, the proposed nonlinear analytical procedures can be used to estimate the structural behavior of RC frames, including seismic capacity and the progressive failure sequence of joints, in a precise and effective manner.
文摘A beam-column joint of precast and partial steel reinforced concrete( PPSRC) is proposed for precast reinforced concrete frames. The PPSRC consists of partial steel and reinforced concrete. The partial steel is located in the core joint region and the connections between concrete members. This paper presents an experimental study of a series of PPSRC specimens. These specimens are tested under low cyclic loading.Experimental results demonstrate that the bearing capacity of the PPSRC specimens is 3 times that of the ordinary reinforced concrete( RC) beam-column joints. The strength and stiffness degradation rates are slower compared with that of the RC beam-column joints. In addition,the strength of the core joint region and the connections is higher than other parts of the PPSRC specimens. Beam failure occurs firstly for the PPSRC specimens,followed by column failure and connections failure. The failure of the core joint region occurs finally.Test results show that the seismic performance of the PPSRC is better than that of the ordinary RC beam-column joints.
基金Supported by the National 863 Scheme of China No.863-512-03-02
文摘A set of new current sensing device is used to realize joint torque control based on current measurement in a precision assembly robot's third joint. The output torque's model of the joint's brushless DC motor is founded. Disturbance factors and the compensated effect of the torque's closed loop based on current measurement are analyzed. Related simulations and experiments show that the system has good current tracking and anti-disturbances performance, which improve the force control performance of the robot in assembly.
文摘This paper analyses the seismic performance of exterior beam-column joints strengthened with unconventional reinforcement detailing. The beam-column joint specimens were tested with reverse cyclic loading applied at the beam end. The samples were divided into two groups based on the joint reinforcement detailing. The first group (Group A) of three non-ductility specimens had joint detailing in accordance with the construction code of practice in India IS456-2000, and the second group (Group B) of three ductility specimens had joint reinforcement detailed as per IS13920-1993, with similar axial load cases as the first group. The experimental studies are proven with the analytical studies carried out by finite element models using ANSYS. The results show that the hysteresis simulation is satisfactory for both un-strengthened and ferrocement strengthened specimens. Furthermore, when ferrocement strengthening is employed, the strengthened beam-column joints exhibit better structural performance than the un-strengthened specimens of about 31.56% and 38.98 for DD-T1 and DD-T2 respectively. The analytical shear strength predictions were in line with the test results reported in the literature, thus adding confidence to the validity of the proposed models.