Mimetic enzymes are devised as alternates or supplements of natural enzymes in broad fields but regulating their activities in a switchable manner remains challenging.Herein,we proposed an enzymatic self-assembly/disa...Mimetic enzymes are devised as alternates or supplements of natural enzymes in broad fields but regulating their activities in a switchable manner remains challenging.Herein,we proposed an enzymatic self-assembly/disassembly strategy to address this issue.A peptide molecule Nap FFEYIH(YH) was rationally designed which,after self-assembling into nanofibers,lined up the histidine moieties to form active hydrolysis centers for mimicking hydrolase activity.Enzymatic dephosphorylation of Nap FFEYp IH(Yp H) by alkaline phosphatase to yield YH also turned “ON” the hydrolase activity.In turn,phosphorylation of YH by phosphokinase epidermal growth factor receptor to yield Yp H disassembled the nanofibers and thus turned the activity “OFF”.As such,the “ON”/“OFF” of the mimetic hydrolase activities could be regulated under physiological conditions through ALP/EGFR-mediated self-assembly/disassembly of histidine nanofibers.This work provides a feasible strategy for the on-demand fabrication of artificial enzymes with controllable and superior activities.展开更多
This work investigates a multi-product parallel disassembly line balancing problem considering multi-skilled workers.A mathematical model for the parallel disassembly line is established to achieve maximized disassemb...This work investigates a multi-product parallel disassembly line balancing problem considering multi-skilled workers.A mathematical model for the parallel disassembly line is established to achieve maximized disassembly profit and minimized workstation cycle time.Based on a product’s AND/OR graph,matrices for task-skill,worker-skill,precedence relationships,and disassembly correlations are developed.A multi-objective discrete chemical reaction optimization algorithm is designed.To enhance solution diversity,improvements are made to four reactions:decomposition,synthesis,intermolecular ineffective collision,and wall invalid collision reaction,completing the evolution of molecular individuals.The established model and improved algorithm are applied to ball pen,flashlight,washing machine,and radio combinations,respectively.Introducing a Collaborative Resource Allocation(CRA)strategy based on a Decomposition-Based Multi-Objective Evolutionary Algorithm,the experimental results are compared with four classical algorithms:MOEA/D,MOEAD-CRA,Non-dominated Sorting Genetic Algorithm Ⅱ(NSGA-Ⅱ),and Non-dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ).This validates the feasibility and superiority of the proposed algorithm in parallel disassembly production lines.展开更多
The current research of configurable product disassemblability focuses on disassemblability evaluation and disassembly sequence planning. Little work has been done on quantitative analysis of configurable product disa...The current research of configurable product disassemblability focuses on disassemblability evaluation and disassembly sequence planning. Little work has been done on quantitative analysis of configurable product disassemblability. The disassemblability modeling technology for configurable product based on disassembly constraint relation weighted design structure matrix (DSM) is proposed. Major factors affecting the disassemblability of configurable product are analyzed, and the disassembling degrees between components in configurable product are obtained by calculating disassembly entropies such as joint type, joint quantity, disassembly path, disassembly accessibility and material compatibility. The disassembly constraint relation weighted DSM of configurable product is constructed and configuration modules are formed by matrix decomposition and tearing operations. The disassembly constraint relation in configuration modules is strong coupling, and the disassembly constraint relation between modules is weak coupling, and the disassemblability configuration model is constructed based on configuration module. Finally, taking a hydraulic forging press as an example, the decomposed weak coupling components are used as configuration modules alone, components with a strong coupling are aggregated into configuration modules, and the disassembly sequence of components inside configuration modules is optimized by tearing operation. A disassemblability configuration model of the hydraulic forging press is constructed. By researching the disassemblability modeling technology of product configuration design based on disassembly constraint relation weighted DSM, the disassembly property in maintenance, recycling and reuse of configurable product are optimized.展开更多
Disassembly sequence planning (DSP) plays a significant role in maintenance planning of the aircraft. It is used during the design stage for the analysis of maintainability of the aircraft. To solve product disassem...Disassembly sequence planning (DSP) plays a significant role in maintenance planning of the aircraft. It is used during the design stage for the analysis of maintainability of the aircraft. To solve product disassembly sequence planning problems efficiently, a product disassembly hybrid graph model, which describes the connection, non-connection and precedence relationships between the product parts, is established based on the characteristic of disassembly. Farther, the optimization model is provided to optimize disassembly sequence. And the solution methodology based on the genetic/simulated annealing algorithm with binaxy-tree algorithm is given. Finally, an example is analyzed in detail, and the result shows that the model is correct and efficient.展开更多
Due to the ability to combine the separately unique characteristics of assembled and disassembled nanoparticles(NPs), the stimuli-responsive self-assembly of NPs has attracted considerable interest in functional mater...Due to the ability to combine the separately unique characteristics of assembled and disassembled nanoparticles(NPs), the stimuli-responsive self-assembly of NPs has attracted considerable interest in functional material applications especially biomaterials. Here we demonstrate a facile and versatile approach to regulate the self-assembly process and transition pH of Au NPs by fine-tuning the co-modified pH-responsive compounds and poly(ethylene glycol)(PEG). Importantly the transition pH(ΔpH=0.4) of the system can be predetermined in the range of 8.2–5.8(assembled to disassembled) and 8.2–4.2(disassembled to assembled), which ideally covers the pH of normal tissue, tumor tissue milieu and organelles. The results of fluorescence imaging, Raman spectroscopy and photothermal conversion of the stimuli-responsive Au NPs shows the potential application for tumor specificity theranostics. In a nutshell this study provides a useful toolkit to design tumor-activatable self-assembled NPs with high specificity and universality.展开更多
The recycling and remanufacturing of end-of-life products are significant for environmental protection and resource conservation.Disassembly is an essential process of remanufacturing end-of-life products.Effective di...The recycling and remanufacturing of end-of-life products are significant for environmental protection and resource conservation.Disassembly is an essential process of remanufacturing end-of-life products.Effective disassembly plans help improve disassembly efficiency and reduce disassembly costs.This paper studies a disassembly planning problem with operation attributes,in which an integrated decision of the disassembly sequence,disassembly directions,and disassembly tools are made.Besides,a mathematical model is formulated with the objective of minimizing the penalty cost caused by the changing of operation attributes.Then,a neighborhood modularization-based artificial bee colony algorithm is developed,which contains a modular optimized design.Finally,two case studies with different scales and complexities are used to verify the performance of the proposed approach,and experimental results show that the proposed algorithm outperforms the two existing methods within an acceptable computational time.展开更多
It is well-recognized that obsolete or discarded products can cause serious environmental pollution if they are poorly be handled.They contain reusable resource that can be recycled and used to generate desired econom...It is well-recognized that obsolete or discarded products can cause serious environmental pollution if they are poorly be handled.They contain reusable resource that can be recycled and used to generate desired economic benefits.Therefore,performing their efficient disassembly is highly important in green manufacturing and sustainable economic development.Their typical examples are electronic appliances and electromechanical/mechanical products.This paper presents a survey on the state of the art of disassembly sequence planning.It can help new researchers or decision makers to search for the right solution for optimal disassembly planning.It reviews the disassembly theory and methods that are applied for the processing,repair,and maintenance of obsolete/discarded products.This paper discusses the recent progress of disassembly sequencing planning in four major aspects:product disassembly modeling methods,mathematical programming methods,artificial intelligence methods,and uncertainty handling.This survey should stimulate readers to be engaged in the research,development and applications of disassembly and remanufacturing methodologies in the Industry 4.0 era.展开更多
The cooperative work between human being and computer based on virtual reality (VR) is investigated to plan the disassembly sequences more efficiently. A three-layer model of human-computer cooperative virtual disasse...The cooperative work between human being and computer based on virtual reality (VR) is investigated to plan the disassembly sequences more efficiently. A three-layer model of human-computer cooperative virtual disassembly is built, and the corresponding human-computer system for stable virtual disassembly is developed. In this system, an immersive and interactive virtual disassembly environment has been created to provide planners with a more visual working scene. For cooperative disassembly, an intelligent module of stability analysis of disassembly operations is embedded into the human-computer system to assist planners to implement disassembly tasks better. The supporting matrix for stability analysis of disassembly operations is defined and the method of stability analysis is detailed. Based on the approach, the stability of any disassembly operation can be analyzed to instruct the manual virtual disassembly. At last, a disassembly case in the virtual environment is given to prove the validity of above ideas.展开更多
The end-of-life vehicle recycling was studied based on the disassembly. The end-of-life recycling and the disassembly were reviewed and discussed. A disassembly experiment of an end-of-life engine was carried out, whi...The end-of-life vehicle recycling was studied based on the disassembly. The end-of-life recycling and the disassembly were reviewed and discussed. A disassembly experiment of an end-of-life engine was carried out, which strictly recorded the process of dismantling. Based on the results, a model of the end-of-life recycling was presented. In this model, the end-of-life parts were classified by three ways which included to recycle directly, to recycle after remanufacturing and to discard. By using this model, the dismantling efficiency and the recycling rate can be improved. Also, it obtains a good result after used in a dismantling factory.展开更多
By means of indirect double immunofluorescent staining, the coordination of PI antigen and perichromonucleolin (PCN), the constituent of nuclear periphery and nucleolus respectively, in the assembly and disassembly of...By means of indirect double immunofluorescent staining, the coordination of PI antigen and perichromonucleolin (PCN), the constituent of nuclear periphery and nucleolus respectively, in the assembly and disassembly of chromosome pellicle during mitosis was studied. It was found that in 3T3 cells, during mitosis PI antigen began to coat the condensing chromosome .surface earlier.than PCN did. However, both of them completed their coating on chromosome at approximately the same stage of mitosis, prometaphase metaphase. The dissociation of PI antigen from chromosome pellicle to participate the formation of nuclear periphery took, place also ahead of that of PCN. At early telophase PI antigen had been extensively involved in the formation of nuclear periphery, while PCN remained in association with the surface of decondensing chromosomes. At late telophase, when PI antigen was localized in an fairly well formed nuclear periphery, PCN was in a stage of forming prenucleolar bodies.展开更多
Sarl is a small GTPase involved in COPⅡ vesicle transport. Previous studies showed that H79G mutation of Sarl can lock Sarl in its GTP-bound active conformation, stabilize coat assembly, and prevent the disassembly o...Sarl is a small GTPase involved in COPⅡ vesicle transport. Previous studies showed that H79G mutation of Sarl can lock Sarl in its GTP-bound active conformation, stabilize coat assembly, and prevent the disassembly of COP Ⅱ vesicle coats by reducing Sec23/24 GAP- stimulated hydrolysis. We show here that the replacement of His79 by glycine induces a large conformation change in switch Ⅱ and results in the lost of hydrogen bond between His79 and its associated nucleophilic water molecule that was hypothesized to reduce the GAP-stimulated hydrolysis during the COP Ⅱ assembly and disassembly. These results confirm that the switch Ⅱ conformation is important for COP Ⅱ disassembly through coat-controlled GTP hydrolysis.展开更多
When using shape memory materials into active disassembly of actual electronic products, because the elastic modulus of shape memory materials is affected by the temperature is relatively large, therefore, the main di...When using shape memory materials into active disassembly of actual electronic products, because the elastic modulus of shape memory materials is affected by the temperature is relatively large, therefore, the main difference of environmental reliability between active disassembly products and common products is the impact of collision and vibration under different temperature. Establishing three-dimensional analysis model, comparing the impact of collision and vibration of mobile phone shells which are made up of PVC materials after casting & radiation and PC/ABS materials under different temperature. Analyzing the reliability of mobile phone under different temperature and optimizing its structure according to data of testing.展开更多
The evolution of Industry 4.0 made it essential to adopt the Internet of Things(IoT)and Cloud Computing(CC)technologies to perform activities in the new age of manufacturing.These technologies enable collecting,storin...The evolution of Industry 4.0 made it essential to adopt the Internet of Things(IoT)and Cloud Computing(CC)technologies to perform activities in the new age of manufacturing.These technologies enable collecting,storing,and retrieving essential information from the manufacturing stage.Data collected at sites are shared with others where execution automatedly occurs.The obtained information must be validated at manufacturing to avoid undesirable data losses during the de-manufacturing process.However,information sharing from the assembly level at the manufacturing stage to disassembly at the product end-of-life state is a major concern.The current research validates the information optimally to offer a minimum set of activities to complete the disassembly process.An optimal disassembly sequence plan(DSP)can possess valid information to organize the necessary actions in manufacturing.However,finding an optimal DSP is complex because of its combinatorial nature.The genetic algorithm(GA)is a widely preferred artificial intelligence(AI)algorithm to obtain a near-optimal solution for the DSP problem.The converging nature at local optima is a limitation in the traditional GA.This study improvised the GA workability by integrating with the proposed priori crossover operator.An optimality function is defined to reduce disassembly effort by considering directional changes as parameters.The enhanced GA method is tested on a real-time product to evaluate the performance.The obtained results reveal that diversity control depends on the operators employed in the disassembly attributes.The proposed method’s solution can be stored in the cloud and shared through IoT devices for effective resource allocation and disassembly for maximum recovery of the product.The effectiveness of the proposed enhanced GA method is determined by making a comparative assessment with traditional GA and other AI methods at different population sizes.展开更多
After remanufacturing disassembly,several kinds of friction damages can be found on the mating surface of interference fit.These damages should be repaired and the cost is closely related to the severity of damages.In...After remanufacturing disassembly,several kinds of friction damages can be found on the mating surface of interference fit.These damages should be repaired and the cost is closely related to the severity of damages.Inspired by the excellent performance of surface texture in wear reduction,5 shapes of pit array textures are added to the specimens’surface to study their reduction effect of disassembly damage for interference fit.The results of disassembly experiments show that the order of influence of texture parameters on disassembly damage is as follows:equivalent circle diameter of single texture,texture shape and texture surface density.The influence of equivalent circle diameter of single texture and texture shape are obviously more significant than that of texture surface density.The circular texture with a surface density of 30%and a diameter of 100μm shows an excellent disassembly damage reduction effect because of its perfect ability of abrasive particle collection.And the probability of disassembly damage formation and evolution is also relatively small on this kind of textured surface.Besides,the load-carrying capacity of interference fit with the excellent texture is confirmed by load-carrying capacity experiments.The results show that the load-carrying capacity of the excellent texture surface is increased about 40%compared with that of without texture.This research provides a potential approach to reduce disassembly damage for interference fit.展开更多
In order to help designers, consider disassembly in their design activities, a method for evaluation of product disassembly is proposed. Criteria characterizing the disassembility of a product are identified. Each cri...In order to help designers, consider disassembly in their design activities, a method for evaluation of product disassembly is proposed. Criteria characterizing the disassembility of a product are identified. Each criterion is assigned a coefficient, thus proposing an index of easy fixations (Iff) as a design indicator to evaluate the level of disassembly of a solution generated by the designer. This index is calculated as a weighted average of the indicators for evaluating the disassembility of the product. The proposed method uses information such as the list of subsets or parts, the component tree, the part geometry, the functional links between components and parts, the properties of the components. It has been tested on one product: the soy roaster.展开更多
Fluorescence imaging has facilitated fluorescent probes to analyze the subcellular localization and dynamics of biological targets. In this paper, we reported a fluorogenic probe for bacteria imaging. The probe was an...Fluorescence imaging has facilitated fluorescent probes to analyze the subcellular localization and dynamics of biological targets. In this paper, we reported a fluorogenic probe for bacteria imaging. The probe was an imidazolium-derived pyrene compound, which self-assembled to form nano-particles and the pyrene fluorescence was quenched by the aggregation effects. When the self-assembly nanoparticles interacted with anionic bacteria surfaces, synergistic effects of electrostatic interaction and hydrophobic force caused competing binding between bacteria surfaces and imidazoliums. This binding resulted in the disassembly of the aggregates to give fluorescence turn-on signal. Meanwhile, the probe bound bacteria surfaces and displayed both pyrene-excimer and pyrene-monomer fluorescence, which gave ratiometric signal. Then, fluorescent labeling by the probe enabled the two-photo ratiometric imaging of bacteria.展开更多
Introduction Vascular endothelial (VE)-cadherin is localized to the endothelial borders and the adherens junctions,which are regulated by changes in mitogen activated protein kinases (MAPK),GTPases,and intracellular c...Introduction Vascular endothelial (VE)-cadherin is localized to the endothelial borders and the adherens junctions,which are regulated by changes in mitogen activated protein kinases (MAPK),GTPases,and intracellular calcium. We previously展开更多
This paper puts forward adaptive anti collision algorithm based on two fork tree decomposition. New search algorithm built on the basis of binary-tree algorithm, using the uniqueness of the label EPC, to estimate the ...This paper puts forward adaptive anti collision algorithm based on two fork tree decomposition. New search algorithm built on the basis of binary-tree algorithm, using the uniqueness of the label EPC, to estimate the distribution of label by slot allocation, the huge and complicated two fork tree is decomposed into several simple binary-tree by search the collision slots for binary-tree, so, it can simplifies the search process. The algorithm fully considers4 important performance parameters of the reader paging times, transmission delay, energy consumption and throughput label, the simulation results show that, the improved anti-collision algorithm is obviously improved performance than other two fork tree algorithm, it is more suitable for RFID anti-collision protocols.展开更多
Ribosome biogenesis,which takes place mainly in the nucleolus,involves coordinated expression of preribosomal RNAs(pre-rRNAs)and ribosomal proteins,pre-rRNA processing,and subunit assembly with the aid of numerous ass...Ribosome biogenesis,which takes place mainly in the nucleolus,involves coordinated expression of preribosomal RNAs(pre-rRNAs)and ribosomal proteins,pre-rRNA processing,and subunit assembly with the aid of numerous assembly factors.Our previous study showed that the Arabidopsis thaliana protein arginine methyltransferase AtPRMT3 regulates pre-rRNA processing;however,the underlying molecular mechanism remains unknown.Here,we report that AtPRMT3 interacts with Ribosomal Protein S2(RPS2),facilitating processing of the 90S/Small Subunit(SSU)processome and repressing nucleolar stress.We isolated an intragenic suppressor of atprmt3-2,which rescues the developmental defects of atprmt3-2 while produces a putative truncated AtPRMT3 protein bearing the entire N-terminus but lacking an intact enzymatic activity domain We further identified RPS2 as an interacting partner of AtPRMT3,and found that loss-of-function rps2a2b mutants were phenotypically reminiscent of atprmt3,showing pleiotropic developmental defects and aberrant pre-rRNA processing.RPS2B binds directly to pre-rRNAs in the nucleus,and such binding is enhanced in atprmt3-2.Consistently,multiple components of the 90S/SSU processome were more enriched by RPS2B in atprmt3-2,which accounts for early pre-rRNA processing defects and results in nucleolar stress.Collectively,our study uncovered a novel mechanism by which AtPRMT3 cooperates with RPS2B to facilitate the dynamic assembly/disassembly of the 90S/SSU processome during ribosome biogenesis and repress nucleolar stress.展开更多
Disassembly sequence planning is an important step of mechanical maintenance. This article presents an integrated study about the generation and optimizing algorithm of the disassembly sequence. Mechanical products ar...Disassembly sequence planning is an important step of mechanical maintenance. This article presents an integrated study about the generation and optimizing algorithm of the disassembly sequence. Mechanical products are divided into two categories of components and connectors. The article uses component-joint graph to represent assembly constraints, including the incidence constraints are represented by incidence matrix and the interference constraints are represented by interference constraints. The inspiring factor and pheromone matrix are calculated according to assembly constraints. Then the ant generates its own disassembly sequences one by one and updates the inspiring factor and pheromone matrix. After all iterations, the best disassembly sequence planning of components and connectors are given. Finally, an application instance of the disassembly sequence of the jack is presented to illustrate the validity of this method.展开更多
基金supported by the National Natural Science Foundation of China (22234002,22204019,82172097)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX22_0245)。
文摘Mimetic enzymes are devised as alternates or supplements of natural enzymes in broad fields but regulating their activities in a switchable manner remains challenging.Herein,we proposed an enzymatic self-assembly/disassembly strategy to address this issue.A peptide molecule Nap FFEYIH(YH) was rationally designed which,after self-assembling into nanofibers,lined up the histidine moieties to form active hydrolysis centers for mimicking hydrolase activity.Enzymatic dephosphorylation of Nap FFEYp IH(Yp H) by alkaline phosphatase to yield YH also turned “ON” the hydrolase activity.In turn,phosphorylation of YH by phosphokinase epidermal growth factor receptor to yield Yp H disassembled the nanofibers and thus turned the activity “OFF”.As such,the “ON”/“OFF” of the mimetic hydrolase activities could be regulated under physiological conditions through ALP/EGFR-mediated self-assembly/disassembly of histidine nanofibers.This work provides a feasible strategy for the on-demand fabrication of artificial enzymes with controllable and superior activities.
文摘This work investigates a multi-product parallel disassembly line balancing problem considering multi-skilled workers.A mathematical model for the parallel disassembly line is established to achieve maximized disassembly profit and minimized workstation cycle time.Based on a product’s AND/OR graph,matrices for task-skill,worker-skill,precedence relationships,and disassembly correlations are developed.A multi-objective discrete chemical reaction optimization algorithm is designed.To enhance solution diversity,improvements are made to four reactions:decomposition,synthesis,intermolecular ineffective collision,and wall invalid collision reaction,completing the evolution of molecular individuals.The established model and improved algorithm are applied to ball pen,flashlight,washing machine,and radio combinations,respectively.Introducing a Collaborative Resource Allocation(CRA)strategy based on a Decomposition-Based Multi-Objective Evolutionary Algorithm,the experimental results are compared with four classical algorithms:MOEA/D,MOEAD-CRA,Non-dominated Sorting Genetic Algorithm Ⅱ(NSGA-Ⅱ),and Non-dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ).This validates the feasibility and superiority of the proposed algorithm in parallel disassembly production lines.
基金Supported by National Natural Science Foundation of China(Grant No.51375437)Zhejiang Provincial Natural Science Foundation of China(Grant No.LY12E05019)
文摘The current research of configurable product disassemblability focuses on disassemblability evaluation and disassembly sequence planning. Little work has been done on quantitative analysis of configurable product disassemblability. The disassemblability modeling technology for configurable product based on disassembly constraint relation weighted design structure matrix (DSM) is proposed. Major factors affecting the disassemblability of configurable product are analyzed, and the disassembling degrees between components in configurable product are obtained by calculating disassembly entropies such as joint type, joint quantity, disassembly path, disassembly accessibility and material compatibility. The disassembly constraint relation weighted DSM of configurable product is constructed and configuration modules are formed by matrix decomposition and tearing operations. The disassembly constraint relation in configuration modules is strong coupling, and the disassembly constraint relation between modules is weak coupling, and the disassemblability configuration model is constructed based on configuration module. Finally, taking a hydraulic forging press as an example, the decomposed weak coupling components are used as configuration modules alone, components with a strong coupling are aggregated into configuration modules, and the disassembly sequence of components inside configuration modules is optimized by tearing operation. A disassemblability configuration model of the hydraulic forging press is constructed. By researching the disassemblability modeling technology of product configuration design based on disassembly constraint relation weighted DSM, the disassembly property in maintenance, recycling and reuse of configurable product are optimized.
基金supported by the National High Technology Research and Development Program of China(2006AA04Z427).
文摘Disassembly sequence planning (DSP) plays a significant role in maintenance planning of the aircraft. It is used during the design stage for the analysis of maintainability of the aircraft. To solve product disassembly sequence planning problems efficiently, a product disassembly hybrid graph model, which describes the connection, non-connection and precedence relationships between the product parts, is established based on the characteristic of disassembly. Farther, the optimization model is provided to optimize disassembly sequence. And the solution methodology based on the genetic/simulated annealing algorithm with binaxy-tree algorithm is given. Finally, an example is analyzed in detail, and the result shows that the model is correct and efficient.
基金supported by the National Natural Science Foundation of China(51433004,51773096)the Natural Science Foundation of Tianjin(17JCZDJC33500)and PCSIRT(IRT1257)
文摘Due to the ability to combine the separately unique characteristics of assembled and disassembled nanoparticles(NPs), the stimuli-responsive self-assembly of NPs has attracted considerable interest in functional material applications especially biomaterials. Here we demonstrate a facile and versatile approach to regulate the self-assembly process and transition pH of Au NPs by fine-tuning the co-modified pH-responsive compounds and poly(ethylene glycol)(PEG). Importantly the transition pH(ΔpH=0.4) of the system can be predetermined in the range of 8.2–5.8(assembled to disassembled) and 8.2–4.2(disassembled to assembled), which ideally covers the pH of normal tissue, tumor tissue milieu and organelles. The results of fluorescence imaging, Raman spectroscopy and photothermal conversion of the stimuli-responsive Au NPs shows the potential application for tumor specificity theranostics. In a nutshell this study provides a useful toolkit to design tumor-activatable self-assembled NPs with high specificity and universality.
基金National Natural Science Foundation of China(Grant Nos.52205526,52205529)Basic and Applied Basic Research Project of the Guangzhou Basic Research Program of China(Grant No.202201010284)+6 种基金National Foreign Expert Project of the Ministry of Science and Technology of China(Grant No.G2021199026L)National Key Research and Development Program of China(Grant Nos.2021YFB3301701,2021YFB3301702)Guangdong Provincial Graduate Education Innovation Program of China(Grant No.82620516)Guangzhou Municipal Innovation Leading Team Project of China(Grant No.201909010006)Guangdong Provincial"Quality Engineering"Construction Project of China(Grant No.210308)Guangdong Provincial Basic and Applied Basic Research Foundation of China(Grant No.2019A1515110399)Fundamental Research Funds for the Central Universities of China(Grant No.21620360).
文摘The recycling and remanufacturing of end-of-life products are significant for environmental protection and resource conservation.Disassembly is an essential process of remanufacturing end-of-life products.Effective disassembly plans help improve disassembly efficiency and reduce disassembly costs.This paper studies a disassembly planning problem with operation attributes,in which an integrated decision of the disassembly sequence,disassembly directions,and disassembly tools are made.Besides,a mathematical model is formulated with the objective of minimizing the penalty cost caused by the changing of operation attributes.Then,a neighborhood modularization-based artificial bee colony algorithm is developed,which contains a modular optimized design.Finally,two case studies with different scales and complexities are used to verify the performance of the proposed approach,and experimental results show that the proposed algorithm outperforms the two existing methods within an acceptable computational time.
基金the Research Foundation of China(L2019027)Liaoning Revitalization Talents Program(XLYC1907166)the Deanship of Scientific Research(DSR)at King Abdulaziz University,Jeddah(KEP-2-135-39)。
文摘It is well-recognized that obsolete or discarded products can cause serious environmental pollution if they are poorly be handled.They contain reusable resource that can be recycled and used to generate desired economic benefits.Therefore,performing their efficient disassembly is highly important in green manufacturing and sustainable economic development.Their typical examples are electronic appliances and electromechanical/mechanical products.This paper presents a survey on the state of the art of disassembly sequence planning.It can help new researchers or decision makers to search for the right solution for optimal disassembly planning.It reviews the disassembly theory and methods that are applied for the processing,repair,and maintenance of obsolete/discarded products.This paper discusses the recent progress of disassembly sequencing planning in four major aspects:product disassembly modeling methods,mathematical programming methods,artificial intelligence methods,and uncertainty handling.This survey should stimulate readers to be engaged in the research,development and applications of disassembly and remanufacturing methodologies in the Industry 4.0 era.
基金This project is supported by National Natural Science Foundation of China (No.59990470-2).
文摘The cooperative work between human being and computer based on virtual reality (VR) is investigated to plan the disassembly sequences more efficiently. A three-layer model of human-computer cooperative virtual disassembly is built, and the corresponding human-computer system for stable virtual disassembly is developed. In this system, an immersive and interactive virtual disassembly environment has been created to provide planners with a more visual working scene. For cooperative disassembly, an intelligent module of stability analysis of disassembly operations is embedded into the human-computer system to assist planners to implement disassembly tasks better. The supporting matrix for stability analysis of disassembly operations is defined and the method of stability analysis is detailed. Based on the approach, the stability of any disassembly operation can be analyzed to instruct the manual virtual disassembly. At last, a disassembly case in the virtual environment is given to prove the validity of above ideas.
文摘The end-of-life vehicle recycling was studied based on the disassembly. The end-of-life recycling and the disassembly were reviewed and discussed. A disassembly experiment of an end-of-life engine was carried out, which strictly recorded the process of dismantling. Based on the results, a model of the end-of-life recycling was presented. In this model, the end-of-life parts were classified by three ways which included to recycle directly, to recycle after remanufacturing and to discard. By using this model, the dismantling efficiency and the recycling rate can be improved. Also, it obtains a good result after used in a dismantling factory.
文摘By means of indirect double immunofluorescent staining, the coordination of PI antigen and perichromonucleolin (PCN), the constituent of nuclear periphery and nucleolus respectively, in the assembly and disassembly of chromosome pellicle during mitosis was studied. It was found that in 3T3 cells, during mitosis PI antigen began to coat the condensing chromosome .surface earlier.than PCN did. However, both of them completed their coating on chromosome at approximately the same stage of mitosis, prometaphase metaphase. The dissociation of PI antigen from chromosome pellicle to participate the formation of nuclear periphery took, place also ahead of that of PCN. At early telophase PI antigen had been extensively involved in the formation of nuclear periphery, while PCN remained in association with the surface of decondensing chromosomes. At late telophase, when PI antigen was localized in an fairly well formed nuclear periphery, PCN was in a stage of forming prenucleolar bodies.
基金This work was supported by the Frontier Interdisciplinary Innovation Fund from Fujian Institute of Research on the Structure of Matter, and Hundred Talents Project of Chinese Academy of Sciences
文摘Sarl is a small GTPase involved in COPⅡ vesicle transport. Previous studies showed that H79G mutation of Sarl can lock Sarl in its GTP-bound active conformation, stabilize coat assembly, and prevent the disassembly of COP Ⅱ vesicle coats by reducing Sec23/24 GAP- stimulated hydrolysis. We show here that the replacement of His79 by glycine induces a large conformation change in switch Ⅱ and results in the lost of hydrogen bond between His79 and its associated nucleophilic water molecule that was hypothesized to reduce the GAP-stimulated hydrolysis during the COP Ⅱ assembly and disassembly. These results confirm that the switch Ⅱ conformation is important for COP Ⅱ disassembly through coat-controlled GTP hydrolysis.
文摘When using shape memory materials into active disassembly of actual electronic products, because the elastic modulus of shape memory materials is affected by the temperature is relatively large, therefore, the main difference of environmental reliability between active disassembly products and common products is the impact of collision and vibration under different temperature. Establishing three-dimensional analysis model, comparing the impact of collision and vibration of mobile phone shells which are made up of PVC materials after casting & radiation and PC/ABS materials under different temperature. Analyzing the reliability of mobile phone under different temperature and optimizing its structure according to data of testing.
基金The authors are grateful to the Raytheon Chair for Systems Engineering for funding.
文摘The evolution of Industry 4.0 made it essential to adopt the Internet of Things(IoT)and Cloud Computing(CC)technologies to perform activities in the new age of manufacturing.These technologies enable collecting,storing,and retrieving essential information from the manufacturing stage.Data collected at sites are shared with others where execution automatedly occurs.The obtained information must be validated at manufacturing to avoid undesirable data losses during the de-manufacturing process.However,information sharing from the assembly level at the manufacturing stage to disassembly at the product end-of-life state is a major concern.The current research validates the information optimally to offer a minimum set of activities to complete the disassembly process.An optimal disassembly sequence plan(DSP)can possess valid information to organize the necessary actions in manufacturing.However,finding an optimal DSP is complex because of its combinatorial nature.The genetic algorithm(GA)is a widely preferred artificial intelligence(AI)algorithm to obtain a near-optimal solution for the DSP problem.The converging nature at local optima is a limitation in the traditional GA.This study improvised the GA workability by integrating with the proposed priori crossover operator.An optimality function is defined to reduce disassembly effort by considering directional changes as parameters.The enhanced GA method is tested on a real-time product to evaluate the performance.The obtained results reveal that diversity control depends on the operators employed in the disassembly attributes.The proposed method’s solution can be stored in the cloud and shared through IoT devices for effective resource allocation and disassembly for maximum recovery of the product.The effectiveness of the proposed enhanced GA method is determined by making a comparative assessment with traditional GA and other AI methods at different population sizes.
基金Supported by National Natural Science Foundation of China (Grant No.51405121)。
文摘After remanufacturing disassembly,several kinds of friction damages can be found on the mating surface of interference fit.These damages should be repaired and the cost is closely related to the severity of damages.Inspired by the excellent performance of surface texture in wear reduction,5 shapes of pit array textures are added to the specimens’surface to study their reduction effect of disassembly damage for interference fit.The results of disassembly experiments show that the order of influence of texture parameters on disassembly damage is as follows:equivalent circle diameter of single texture,texture shape and texture surface density.The influence of equivalent circle diameter of single texture and texture shape are obviously more significant than that of texture surface density.The circular texture with a surface density of 30%and a diameter of 100μm shows an excellent disassembly damage reduction effect because of its perfect ability of abrasive particle collection.And the probability of disassembly damage formation and evolution is also relatively small on this kind of textured surface.Besides,the load-carrying capacity of interference fit with the excellent texture is confirmed by load-carrying capacity experiments.The results show that the load-carrying capacity of the excellent texture surface is increased about 40%compared with that of without texture.This research provides a potential approach to reduce disassembly damage for interference fit.
文摘In order to help designers, consider disassembly in their design activities, a method for evaluation of product disassembly is proposed. Criteria characterizing the disassembility of a product are identified. Each criterion is assigned a coefficient, thus proposing an index of easy fixations (Iff) as a design indicator to evaluate the level of disassembly of a solution generated by the designer. This index is calculated as a weighted average of the indicators for evaluating the disassembility of the product. The proposed method uses information such as the list of subsets or parts, the component tree, the part geometry, the functional links between components and parts, the properties of the components. It has been tested on one product: the soy roaster.
基金financially supported by the National Natural Science Foundation of China(Nos. 21878286, 21502189)DICP (Nos. DMT0201603, TMSR201601)
文摘Fluorescence imaging has facilitated fluorescent probes to analyze the subcellular localization and dynamics of biological targets. In this paper, we reported a fluorogenic probe for bacteria imaging. The probe was an imidazolium-derived pyrene compound, which self-assembled to form nano-particles and the pyrene fluorescence was quenched by the aggregation effects. When the self-assembly nanoparticles interacted with anionic bacteria surfaces, synergistic effects of electrostatic interaction and hydrophobic force caused competing binding between bacteria surfaces and imidazoliums. This binding resulted in the disassembly of the aggregates to give fluorescence turn-on signal. Meanwhile, the probe bound bacteria surfaces and displayed both pyrene-excimer and pyrene-monomer fluorescence, which gave ratiometric signal. Then, fluorescent labeling by the probe enabled the two-photo ratiometric imaging of bacteria.
基金supported by grants from NIH CA-125707 NSF CBET-0729091 (C D ),as well as NIH AI-065566 (A A )
文摘Introduction Vascular endothelial (VE)-cadherin is localized to the endothelial borders and the adherens junctions,which are regulated by changes in mitogen activated protein kinases (MAPK),GTPases,and intracellular calcium. We previously
文摘This paper puts forward adaptive anti collision algorithm based on two fork tree decomposition. New search algorithm built on the basis of binary-tree algorithm, using the uniqueness of the label EPC, to estimate the distribution of label by slot allocation, the huge and complicated two fork tree is decomposed into several simple binary-tree by search the collision slots for binary-tree, so, it can simplifies the search process. The algorithm fully considers4 important performance parameters of the reader paging times, transmission delay, energy consumption and throughput label, the simulation results show that, the improved anti-collision algorithm is obviously improved performance than other two fork tree algorithm, it is more suitable for RFID anti-collision protocols.
基金This work was supported by grants from the National Natural Science Foundation of China(31788103 and 91540203 to X.Cao,31770874 to C.L.,31900932 to R.H.,and 31701096 to J.S.),Chinathe Strategic Priority Research Program of Chinese Academy of Sciences(XDB27030201 to X.Cao),China+1 种基金the Key Research Program of Frontier Sciences of Chinese Academy of Sciences(QYZDY-SSW-SMC022 to X.Cao),Chinathe State Key Laboratory of Plant Genomics,China.
文摘Ribosome biogenesis,which takes place mainly in the nucleolus,involves coordinated expression of preribosomal RNAs(pre-rRNAs)and ribosomal proteins,pre-rRNA processing,and subunit assembly with the aid of numerous assembly factors.Our previous study showed that the Arabidopsis thaliana protein arginine methyltransferase AtPRMT3 regulates pre-rRNA processing;however,the underlying molecular mechanism remains unknown.Here,we report that AtPRMT3 interacts with Ribosomal Protein S2(RPS2),facilitating processing of the 90S/Small Subunit(SSU)processome and repressing nucleolar stress.We isolated an intragenic suppressor of atprmt3-2,which rescues the developmental defects of atprmt3-2 while produces a putative truncated AtPRMT3 protein bearing the entire N-terminus but lacking an intact enzymatic activity domain We further identified RPS2 as an interacting partner of AtPRMT3,and found that loss-of-function rps2a2b mutants were phenotypically reminiscent of atprmt3,showing pleiotropic developmental defects and aberrant pre-rRNA processing.RPS2B binds directly to pre-rRNAs in the nucleus,and such binding is enhanced in atprmt3-2.Consistently,multiple components of the 90S/SSU processome were more enriched by RPS2B in atprmt3-2,which accounts for early pre-rRNA processing defects and results in nucleolar stress.Collectively,our study uncovered a novel mechanism by which AtPRMT3 cooperates with RPS2B to facilitate the dynamic assembly/disassembly of the 90S/SSU processome during ribosome biogenesis and repress nucleolar stress.
文摘Disassembly sequence planning is an important step of mechanical maintenance. This article presents an integrated study about the generation and optimizing algorithm of the disassembly sequence. Mechanical products are divided into two categories of components and connectors. The article uses component-joint graph to represent assembly constraints, including the incidence constraints are represented by incidence matrix and the interference constraints are represented by interference constraints. The inspiring factor and pheromone matrix are calculated according to assembly constraints. Then the ant generates its own disassembly sequences one by one and updates the inspiring factor and pheromone matrix. After all iterations, the best disassembly sequence planning of components and connectors are given. Finally, an application instance of the disassembly sequence of the jack is presented to illustrate the validity of this method.