Today, we observe that more and more, radio frequency identification (RFID) technology has been used to identify and track objects in enterprises and institutions. In addition, we also perceive the growing adoption of...Today, we observe that more and more, radio frequency identification (RFID) technology has been used to identify and track objects in enterprises and institutions. In addition, we also perceive the growing adoption of cloud computing, either public or private, to process and store data from the objects. In this context, the literature does not present an initiative that looks into the network on enterprise-cloud interactions, so neglecting network performance and congestion information when transmitting data to the cloud. Thus, we are presenting a model named ACMA—Automatic Control and Management of Assets. ACMA employs context awareness to control and monitor corporate assets in companies with multiple units. ACMA provides a centralized point of access in the cloud in which interested actors can get online data about each corporate asset. In particular, our scientific contribution consists in considering network congestion to control dynamically the data updating interval from sensors to the cloud. The idea is to search for reliability and integrity of operations, without losing or corrupting data when updating the information to cloud. Thus, this article describes the ACMA model, its architecture, algorithms and features. In addition, we describe the evaluation methodology and the results obtained through experiments and simulations based on the developed prototype.展开更多
In this paper we discuss the technical possibilities of cloud-based virtual reality (cloud-based VR) computing tools for online collaboration in urban planning and design. We first create a digital asset representing ...In this paper we discuss the technical possibilities of cloud-based virtual reality (cloud-based VR) computing tools for online collaboration in urban planning and design. We first create a digital asset representing our design proposal of a pedestrian bridge in Shibuya, Tokyo. A platform for cloud-based VR technology, i.e., a VR-Cloud server, is used to open the VR dataset to public collaboration over the Internet. The digital asset representing the design scheme of our pedestrian bridge includes buildings, roads, trees and street furniture for the entire urban area. The vehicles and people are designed and inputted into the virtual world of the urban area, in which they run and walk with predefined behaviour scenarios. Users share the VR world by accessing the VR-Cloud servers from remote clients, using cloud communication software to review vehicle and pedestrian crowd simulations and discuss the design concepts. Meanwhile, we compare the advantages and disadvantages of three cloud-based VR tools on their technical support for net collaboration: 1) VR-Cloud;2) Google Earth;and 3) 3DVIA.展开更多
文摘Today, we observe that more and more, radio frequency identification (RFID) technology has been used to identify and track objects in enterprises and institutions. In addition, we also perceive the growing adoption of cloud computing, either public or private, to process and store data from the objects. In this context, the literature does not present an initiative that looks into the network on enterprise-cloud interactions, so neglecting network performance and congestion information when transmitting data to the cloud. Thus, we are presenting a model named ACMA—Automatic Control and Management of Assets. ACMA employs context awareness to control and monitor corporate assets in companies with multiple units. ACMA provides a centralized point of access in the cloud in which interested actors can get online data about each corporate asset. In particular, our scientific contribution consists in considering network congestion to control dynamically the data updating interval from sensors to the cloud. The idea is to search for reliability and integrity of operations, without losing or corrupting data when updating the information to cloud. Thus, this article describes the ACMA model, its architecture, algorithms and features. In addition, we describe the evaluation methodology and the results obtained through experiments and simulations based on the developed prototype.
文摘In this paper we discuss the technical possibilities of cloud-based virtual reality (cloud-based VR) computing tools for online collaboration in urban planning and design. We first create a digital asset representing our design proposal of a pedestrian bridge in Shibuya, Tokyo. A platform for cloud-based VR technology, i.e., a VR-Cloud server, is used to open the VR dataset to public collaboration over the Internet. The digital asset representing the design scheme of our pedestrian bridge includes buildings, roads, trees and street furniture for the entire urban area. The vehicles and people are designed and inputted into the virtual world of the urban area, in which they run and walk with predefined behaviour scenarios. Users share the VR world by accessing the VR-Cloud servers from remote clients, using cloud communication software to review vehicle and pedestrian crowd simulations and discuss the design concepts. Meanwhile, we compare the advantages and disadvantages of three cloud-based VR tools on their technical support for net collaboration: 1) VR-Cloud;2) Google Earth;and 3) 3DVIA.