The central treasury is implementing six measures this year to help small-and medium-sized enterprises (SMEs) meet the challenges they face, according to the Ministry of Finance.
Operations in assembling and joining large size aircraft components are changed to novel digital and flexible ways by digital measurement assisted alignment.Positions and orientations(P&O)of aligned components are ...Operations in assembling and joining large size aircraft components are changed to novel digital and flexible ways by digital measurement assisted alignment.Positions and orientations(P&O)of aligned components are critical characters which assure geometrical positions and relationships of those components.Therefore,evaluating the P&O of a component is considered necessary and critical for ensuring accuracy in aircraft assembly.Uncertainty of position and orientation(U-P&O),as a part of the evaluating result of P&O,needs to be given for ensuring the integrity and credibility of the result;furthermore,U-P&O is necessary for error tracing and quality evaluating of measurement assisted aircraft assembly.However,current research mainly focuses on the process integration of measurement with assembly,and usually ignores the uncertainty of measured result and its influence on quality evaluation.This paper focuses on the expression,analysis,and application of U-P&O in measurement assisted alignment.The geometrical and algebraical connotations of U-P&O are presented.Then,an analytical algorithm for evaluating the multi-dimensional U-P&O is given,and the effect factors and characteristics of U-P&O are discussed.Finally,U-P&O is used to evaluate alignment in aircraft assembly for quality evaluating and improving.Cases are introduced with the methodology.展开更多
In the assembly process of large volume product,engineering constraints limit the relative pose of components and serve as a standard for judging assembly quality.However,in the traditional process of target pose esti...In the assembly process of large volume product,engineering constraints limit the relative pose of components and serve as a standard for judging assembly quality.However,in the traditional process of target pose estimation,a general method is needed for establishing the correlation between engineering constraints and product pose,and it is difficult to evaluate pose by constraints comprehensively.Therefore,the process of target pose estimation and evaluation is separated.In this paper,a pose coordination model based on multi-constraints is proposed,which includes pre-processing,pose estimation,pose adjustment and evaluation.Firstly,engineering constraints are decoupled into 4 types of Minimum Geometrical Reference Constraints(MGRC),and the inequalities for solving target pose are formulated.Then the Constraint Coordination Index(CCI)is defined as the optimization objective to solve the target pose.Finally,with CCI as the numerical index,the target pose is evaluated to illustrate the quality of assembly.Taking the simulation experiment of wing-fuselage jointing as an example,the external and internal parameters of model are analyzed,and the pose estimation based on multi-constraints reduces the CCI by 12%,compared with the point-set-registration method.展开更多
This paper describes the analysis and design of an assistive device for elderly people under development at the EgyptJapan University of Science and Technology(E-JUST) named E-JUST assistive device(EJAD).Several e...This paper describes the analysis and design of an assistive device for elderly people under development at the EgyptJapan University of Science and Technology(E-JUST) named E-JUST assistive device(EJAD).Several experiments were carried out using a motion capture system(VICON) and inertial sensors to identify the human posture during the sit-to-stand motion.The EJAD uses only two inertial measurement units(IMUs) fused through an adaptive neuro-fuzzy inference systems(ANFIS) algorithm to imitate the real motion of the caregiver.The EJAD consists of two main parts,a robot arm and an active walker.The robot arm is a 2-degree-of-freedom(2-DOF) planar manipulator.In addition,a back support with a passive joint is used to support the patient s back.The IMUs on the leg and trunk of the patient are used to compensate for and adapt to the EJAD system motion depending on the obtained patient posture.The ANFIS algorithm is used to train the fuzzy system that converts the IMUs signals to the right posture of the patient.A control scheme is proposed to control the system motion based on practical measurements taken from the experiments.A computer simulation showed a relatively good performance of the EJAD in assisting the patient.展开更多
文摘The central treasury is implementing six measures this year to help small-and medium-sized enterprises (SMEs) meet the challenges they face, according to the Ministry of Finance.
基金support of National Natural Science Foundation of China (No.50905010)Fund of National Engineering and Research Center for Commercial Aircraft Manufacturing (No.SAMC12-JS-15-044)
文摘Operations in assembling and joining large size aircraft components are changed to novel digital and flexible ways by digital measurement assisted alignment.Positions and orientations(P&O)of aligned components are critical characters which assure geometrical positions and relationships of those components.Therefore,evaluating the P&O of a component is considered necessary and critical for ensuring accuracy in aircraft assembly.Uncertainty of position and orientation(U-P&O),as a part of the evaluating result of P&O,needs to be given for ensuring the integrity and credibility of the result;furthermore,U-P&O is necessary for error tracing and quality evaluating of measurement assisted aircraft assembly.However,current research mainly focuses on the process integration of measurement with assembly,and usually ignores the uncertainty of measured result and its influence on quality evaluation.This paper focuses on the expression,analysis,and application of U-P&O in measurement assisted alignment.The geometrical and algebraical connotations of U-P&O are presented.Then,an analytical algorithm for evaluating the multi-dimensional U-P&O is given,and the effect factors and characteristics of U-P&O are discussed.Finally,U-P&O is used to evaluate alignment in aircraft assembly for quality evaluating and improving.Cases are introduced with the methodology.
基金supported by the Special Research on Civil Aircraft of China(No.MJZ-2017-J-96)the Equipment Pre-research Project of China(No.41423010401)。
文摘In the assembly process of large volume product,engineering constraints limit the relative pose of components and serve as a standard for judging assembly quality.However,in the traditional process of target pose estimation,a general method is needed for establishing the correlation between engineering constraints and product pose,and it is difficult to evaluate pose by constraints comprehensively.Therefore,the process of target pose estimation and evaluation is separated.In this paper,a pose coordination model based on multi-constraints is proposed,which includes pre-processing,pose estimation,pose adjustment and evaluation.Firstly,engineering constraints are decoupled into 4 types of Minimum Geometrical Reference Constraints(MGRC),and the inequalities for solving target pose are formulated.Then the Constraint Coordination Index(CCI)is defined as the optimization objective to solve the target pose.Finally,with CCI as the numerical index,the target pose is evaluated to illustrate the quality of assembly.Taking the simulation experiment of wing-fuselage jointing as an example,the external and internal parameters of model are analyzed,and the pose estimation based on multi-constraints reduces the CCI by 12%,compared with the point-set-registration method.
基金supported in part by a scholarship provided by the Mission DepartmentMinistry of Higher Education of the Government of Egypt
文摘This paper describes the analysis and design of an assistive device for elderly people under development at the EgyptJapan University of Science and Technology(E-JUST) named E-JUST assistive device(EJAD).Several experiments were carried out using a motion capture system(VICON) and inertial sensors to identify the human posture during the sit-to-stand motion.The EJAD uses only two inertial measurement units(IMUs) fused through an adaptive neuro-fuzzy inference systems(ANFIS) algorithm to imitate the real motion of the caregiver.The EJAD consists of two main parts,a robot arm and an active walker.The robot arm is a 2-degree-of-freedom(2-DOF) planar manipulator.In addition,a back support with a passive joint is used to support the patient s back.The IMUs on the leg and trunk of the patient are used to compensate for and adapt to the EJAD system motion depending on the obtained patient posture.The ANFIS algorithm is used to train the fuzzy system that converts the IMUs signals to the right posture of the patient.A control scheme is proposed to control the system motion based on practical measurements taken from the experiments.A computer simulation showed a relatively good performance of the EJAD in assisting the patient.