In the conversion process of syngas-to-C_(2)species,the OH species are inevitably produced accompanying the production of key intermediates CH_(x)(x=1-3),traditionally,the function of surface OH species is generally a...In the conversion process of syngas-to-C_(2)species,the OH species are inevitably produced accompanying the production of key intermediates CH_(x)(x=1-3),traditionally,the function of surface OH species is generally accepted as the hydrogenating reactive species.This work for the first time proposed and confirmed the assisted catalytic mechanism of surface OH species that performed as the promoter for syngas-to-C_(2)species on Cu-based catalysts.DFT and microkinetic modeling results reveal that the produced OH species accompanying the intermediates CH_(x)production on the MCu(M=Co,Fe,Rh)catalysts can stably exist to form OH/MCu catalysts,on which the presence of surface OH species as the promoter not only presented better activity and selectivity toward CH_(x)(x=1-3)compared to MCu catalysts,but also significantly suppressed CH_(3)OH production,providing enough CH_(x)sources to favor the production of C_(2)hydrocarbons and oxygenates.Correspondingly,the electronic properties analysis revealed the essential relationship between the electronic feature of OH/MCu catalysts and catalytic performance,attributing to the unique electronic micro-environment of the catalysts under the interaction of surface OH species.This new mechanism is called as OH-assisted catalytic mechanism,which may be applied in the reaction systems related to the generation of OH species.展开更多
During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution qual...During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution quality and slow convergence speed on multimodal function optimization. A composite particle swarm optimization (CPSO) for solving these difficulties is presented, in which a novel learning strategy plus an assisted search mechanism framework is used. Instead of simple learning strategy of the original PSO, the proposed CPSO combines one particle's historical best information and the global best information into one learning exemplar to guide the particle movement. The proposed learning strategy can reserve the original search information and lead to faster convergence speed. The proposed assisted search mechanism is designed to look for the global optimum. Search direction of particles can be greatly changed by this mechanism so that the algorithm has a large chance to escape from local optima. In order to make the assisted search mechanism more efficient and the algorithm more reliable, the executive probability of the assisted search mechanism is adjusted by the feedback of the improvement degree of optimal value after each iteration. According to the result of numerical experiments on multimodal benchmark functions such as Schwefel, Rastrigin, Ackley and Griewank both with and without coordinate rotation, the proposed CPSO offers faster convergence speed, higher quality solution and stronger robustness than other variants of PSO.展开更多
A mechanically assisted electroless barrel-plating Ni-P was carried out in a rolling drum containing Mg alloy specimens and ceramic balls, which was submerged in a bath containing electroless plating solution deposite...A mechanically assisted electroless barrel-plating Ni-P was carried out in a rolling drum containing Mg alloy specimens and ceramic balls, which was submerged in a bath containing electroless plating solution deposited by this novel technique have a It is demonstrated that the Ni-P coatings crystallized Ni-P solid solution structure, showing fine-grains, higher hardness, and higher corrosion resistance compared with the conventional electroless plated amorphous Ni-P coatings. After heat treatment at 400 ℃ for 1 h, the structure of such Ni-P coatings were transformed to a structure with Ni-Ni3P double phases, and cracks in these coatings could not be observed, whereas cracks appeared seriously in the conventional electroless plated Ni-P coating after same heat treatment. Therefore, both hardness and corrosion resistance of these Ni-P coatings can be improved further by heat treatment. All of these beneficial effects can be attributed to the role of mechanical attrition during the mechanically assisted electroless barrel-plating process.展开更多
An important concern with the deaf community is inability to hear partially or totally. This may affect the development of language during childhood, which limits their habitual existence. Consequently to facilitate s...An important concern with the deaf community is inability to hear partially or totally. This may affect the development of language during childhood, which limits their habitual existence. Consequently to facilitate such deaf speakers through certain assistive mechanism, an effort has been taken to understand the acoustic characteristics of deaf speakers by evaluating the territory specific utterances. Speech signals are acquired from 32 normal and 32 deaf speakers by uttering ten Indian native Tamil language words. The speech parameters like pitch, formants, signal-to-noise ratio, energy, intensity, jitter and shimmer are analyzed. From the results, it has been observed that the acoustic characteristics of deaf speakers differ significantly and their quantitative measure dominates the normal speakers for the words considered. The study also reveals that the informative part of speech in a normal and deaf speakers may be identified using the acoustic features. In addition, these attributes may be used for differential corrections of deaf speaker’s speech signal and facilitate listeners to understand the conveyed information.展开更多
This paper proposes a new upper-limb exoskeleton to reduce worker physical strain.The proposed design is based on a novel PRRRP(P-Prismatic;R-Revolute)kinematic chain with 5 passive Degrees of Freedom(DoF).Utilizing a...This paper proposes a new upper-limb exoskeleton to reduce worker physical strain.The proposed design is based on a novel PRRRP(P-Prismatic;R-Revolute)kinematic chain with 5 passive Degrees of Freedom(DoF).Utilizing a magnetic spring,the proposed mechanism includes a specially designed locking mechanism that maintains any desired task posture.The proposed exoskeleton incorporates a balancing mechanism to alleviate discomfort and spinal torsional effects also helping in limb weight relief.This paper reports specific models and simulations to demonstrate the feasibility and effectiveness of the proposed design.An experimental characterization is performed to validate the performance of the mechanism in terms of forces and physical strain during a specific application consisting of ceiling-surface drilling tasks.The obtained results preliminarily validate the engineering feasibility and effectiveness of the proposed exoskeleton in the intended operation task thereby requiring the user to exert significantly less force than when not wearing it.展开更多
A mechanically assisted electroless (MAE) barrel-plating technique has been developed to deposit Ni-P coatings on carbon steel.The mechanical treatment was carried out in a rolling drum containing carbon steel speci...A mechanically assisted electroless (MAE) barrel-plating technique has been developed to deposit Ni-P coatings on carbon steel.The mechanical treatment was carried out in a rolling drum containing carbon steel specimens and glass balls of 2-3 mm diameter,which was submerged in a bath containing electroless plating solution.The coatings are Ni-polycrystalline and have a fine grained structure and smooth surfaces.The hardness and corrosion resistance of the novel coatings are considerably improved compared with the conventional electroless (CE)-plated Ni-P coatings,which are amorphous.After heat treatment at 400 C for one hour,cracks and pores are observed in the CE-plated Ni-P coating,while no cracks appear in the MAE barrel-plated Ni-P coating.The improved properties of the MAE barrel-plated Ni-P coatings demonstrate the advantages of this novel technique,wide applications of which will be found in industries.展开更多
A new homemade apparatus, i.e. vibration assisted extrusion equipment, is employed to extrude polypropylene. Vibration assisted extrusion is based on the application of a specific macroscopic shear vibration field. Re...A new homemade apparatus, i.e. vibration assisted extrusion equipment, is employed to extrude polypropylene. Vibration assisted extrusion is based on the application of a specific macroscopic shear vibration field. Reduction of apparent melt viscosity as a function of vibration frequency is measured at different screw speeds and die temperatures. The effect of the process is investigated by performing mechanical tests, differential scanning calorimetry studies, polarized light microscopy and wide-angle X-ray diffraction. It is found that, compared with conventional extrusion, vibration assisted extrusion could effectively improve the rheological properties of PP melt by incorporating an extra shear vibration field. Both the tensile strength and elongation at break increased under the shear vibration field. For vibration assisted extrusion samples, both the melting temperature and crystallinity increased, accompanied by remarkable grain refinement. Vibration assisted extrusion induced a significantly enhanced bimodal orientation with a high fraction of a^*-oriented α-crystallites, while only a limited improvement in the flow direction orientation. A structural model, i.e. bimodal c-axis and a^*-axis orientation of PP macromolecular chains, was adopted to explain the experimental results.展开更多
基金financially supported by Key Projects of National Natural Science Foundation of China(No.21736007)National Natural Science Foundation of China(Nos.22078221,21776193,21476155)Top Young Innovative Talents of Shanxi。
文摘In the conversion process of syngas-to-C_(2)species,the OH species are inevitably produced accompanying the production of key intermediates CH_(x)(x=1-3),traditionally,the function of surface OH species is generally accepted as the hydrogenating reactive species.This work for the first time proposed and confirmed the assisted catalytic mechanism of surface OH species that performed as the promoter for syngas-to-C_(2)species on Cu-based catalysts.DFT and microkinetic modeling results reveal that the produced OH species accompanying the intermediates CH_(x)production on the MCu(M=Co,Fe,Rh)catalysts can stably exist to form OH/MCu catalysts,on which the presence of surface OH species as the promoter not only presented better activity and selectivity toward CH_(x)(x=1-3)compared to MCu catalysts,but also significantly suppressed CH_(3)OH production,providing enough CH_(x)sources to favor the production of C_(2)hydrocarbons and oxygenates.Correspondingly,the electronic properties analysis revealed the essential relationship between the electronic feature of OH/MCu catalysts and catalytic performance,attributing to the unique electronic micro-environment of the catalysts under the interaction of surface OH species.This new mechanism is called as OH-assisted catalytic mechanism,which may be applied in the reaction systems related to the generation of OH species.
基金Projects(50275150,61173052)supported by the National Natural Science Foundation of China
文摘During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution quality and slow convergence speed on multimodal function optimization. A composite particle swarm optimization (CPSO) for solving these difficulties is presented, in which a novel learning strategy plus an assisted search mechanism framework is used. Instead of simple learning strategy of the original PSO, the proposed CPSO combines one particle's historical best information and the global best information into one learning exemplar to guide the particle movement. The proposed learning strategy can reserve the original search information and lead to faster convergence speed. The proposed assisted search mechanism is designed to look for the global optimum. Search direction of particles can be greatly changed by this mechanism so that the algorithm has a large chance to escape from local optima. In order to make the assisted search mechanism more efficient and the algorithm more reliable, the executive probability of the assisted search mechanism is adjusted by the feedback of the improvement degree of optimal value after each iteration. According to the result of numerical experiments on multimodal benchmark functions such as Schwefel, Rastrigin, Ackley and Griewank both with and without coordinate rotation, the proposed CPSO offers faster convergence speed, higher quality solution and stronger robustness than other variants of PSO.
基金supported by the National Natural Science Foundation of China (Grant No.50671006)the National R&D Infrastructure and Facility Development Program of China (2005DKA10400-Z1)
文摘A mechanically assisted electroless barrel-plating Ni-P was carried out in a rolling drum containing Mg alloy specimens and ceramic balls, which was submerged in a bath containing electroless plating solution deposited by this novel technique have a It is demonstrated that the Ni-P coatings crystallized Ni-P solid solution structure, showing fine-grains, higher hardness, and higher corrosion resistance compared with the conventional electroless plated amorphous Ni-P coatings. After heat treatment at 400 ℃ for 1 h, the structure of such Ni-P coatings were transformed to a structure with Ni-Ni3P double phases, and cracks in these coatings could not be observed, whereas cracks appeared seriously in the conventional electroless plated Ni-P coating after same heat treatment. Therefore, both hardness and corrosion resistance of these Ni-P coatings can be improved further by heat treatment. All of these beneficial effects can be attributed to the role of mechanical attrition during the mechanically assisted electroless barrel-plating process.
文摘An important concern with the deaf community is inability to hear partially or totally. This may affect the development of language during childhood, which limits their habitual existence. Consequently to facilitate such deaf speakers through certain assistive mechanism, an effort has been taken to understand the acoustic characteristics of deaf speakers by evaluating the territory specific utterances. Speech signals are acquired from 32 normal and 32 deaf speakers by uttering ten Indian native Tamil language words. The speech parameters like pitch, formants, signal-to-noise ratio, energy, intensity, jitter and shimmer are analyzed. From the results, it has been observed that the acoustic characteristics of deaf speakers differ significantly and their quantitative measure dominates the normal speakers for the words considered. The study also reveals that the informative part of speech in a normal and deaf speakers may be identified using the acoustic features. In addition, these attributes may be used for differential corrections of deaf speaker’s speech signal and facilitate listeners to understand the conveyed information.
基金supported by the European Regional Development Fund and the Romanian Government through the Competitiveness Operational Programme 2014-2020project APOLLO,MySMIS code 155988,contract no.9/1.2.1-PTIap.2/23.02.2023.
文摘This paper proposes a new upper-limb exoskeleton to reduce worker physical strain.The proposed design is based on a novel PRRRP(P-Prismatic;R-Revolute)kinematic chain with 5 passive Degrees of Freedom(DoF).Utilizing a magnetic spring,the proposed mechanism includes a specially designed locking mechanism that maintains any desired task posture.The proposed exoskeleton incorporates a balancing mechanism to alleviate discomfort and spinal torsional effects also helping in limb weight relief.This paper reports specific models and simulations to demonstrate the feasibility and effectiveness of the proposed design.An experimental characterization is performed to validate the performance of the mechanism in terms of forces and physical strain during a specific application consisting of ceiling-surface drilling tasks.The obtained results preliminarily validate the engineering feasibility and effectiveness of the proposed exoskeleton in the intended operation task thereby requiring the user to exert significantly less force than when not wearing it.
基金supported by the NationalNatural Science Foundation of China(No.50671006)
文摘A mechanically assisted electroless (MAE) barrel-plating technique has been developed to deposit Ni-P coatings on carbon steel.The mechanical treatment was carried out in a rolling drum containing carbon steel specimens and glass balls of 2-3 mm diameter,which was submerged in a bath containing electroless plating solution.The coatings are Ni-polycrystalline and have a fine grained structure and smooth surfaces.The hardness and corrosion resistance of the novel coatings are considerably improved compared with the conventional electroless (CE)-plated Ni-P coatings,which are amorphous.After heat treatment at 400 C for one hour,cracks and pores are observed in the CE-plated Ni-P coating,while no cracks appear in the MAE barrel-plated Ni-P coating.The improved properties of the MAE barrel-plated Ni-P coatings demonstrate the advantages of this novel technique,wide applications of which will be found in industries.
基金financially supported by the National Natural Science Foundation of China(Nos.51033004 and 51121001)China Postdoctoral Science Foundation(No.2013M540711)
文摘A new homemade apparatus, i.e. vibration assisted extrusion equipment, is employed to extrude polypropylene. Vibration assisted extrusion is based on the application of a specific macroscopic shear vibration field. Reduction of apparent melt viscosity as a function of vibration frequency is measured at different screw speeds and die temperatures. The effect of the process is investigated by performing mechanical tests, differential scanning calorimetry studies, polarized light microscopy and wide-angle X-ray diffraction. It is found that, compared with conventional extrusion, vibration assisted extrusion could effectively improve the rheological properties of PP melt by incorporating an extra shear vibration field. Both the tensile strength and elongation at break increased under the shear vibration field. For vibration assisted extrusion samples, both the melting temperature and crystallinity increased, accompanied by remarkable grain refinement. Vibration assisted extrusion induced a significantly enhanced bimodal orientation with a high fraction of a^*-oriented α-crystallites, while only a limited improvement in the flow direction orientation. A structural model, i.e. bimodal c-axis and a^*-axis orientation of PP macromolecular chains, was adopted to explain the experimental results.