We describes a controllable synthesis procedure for growing a-Ee2O3 and Ee3O4 nanowires. High magnetic hematite a-Fe2O3 nanowires are successfully grown on Fe0.5Ni0.5 alloy substrates via an oxide assisted vapor-solid...We describes a controllable synthesis procedure for growing a-Ee2O3 and Ee3O4 nanowires. High magnetic hematite a-Fe2O3 nanowires are successfully grown on Fe0.5Ni0.5 alloy substrates via an oxide assisted vapor-solid process. Experimental results also indicate that previous immersion of the substrates in a solution of oxalic acid causes the grown nanowires to convert gradually into magnetite (Fe3O4) nanowires. Additionally, the saturated state of Fe3O4 nanowires is achieved as the oxalic acid concentration reaches 0.75 mol/L. The average diameter and length of nanowires expands with an increasing operation temperature and the growth density of nanowires accumulates with an increasing gas flux in the vapor-solid process. The growth mechanism of a-Fe2O3 and Fe3O4 nanowires is also discussed. The results demonstrate that the entire synthesis of nanowires can be completed within 2 h.展开更多
A rapidly deployable dense seismic monitoring system which is capable of transmitting acquired data in real time and analyzing data automatically is crucial in seismic hazard mitigation after a major earthquake.Howeve...A rapidly deployable dense seismic monitoring system which is capable of transmitting acquired data in real time and analyzing data automatically is crucial in seismic hazard mitigation after a major earthquake.However,it is rather difficult for current seismic nodal stations to transmit data in real time for an extended period of time,and it usually takes a great amount of time to process the acquired data manually.To monitor earthquakes in real time flexibly,we develop a mobile integrated seismic monitoring system consisting of newly developed nodal units with 4G telemetry and a real-time AI-assisted automatic data processing workflow.The integrated system is convenient for deployment and has been successfully applied in monitoring the aftershocks of the Yangbi M_(S) 6.4 earthquake occurred on May 21,2021 in Yangbi County,Dali,Yunnan in southwest China.The acquired seismic data are transmitted almost in real time through the 4G cellular network,and then processed automat-ically for event detection,positioning,magnitude calculation and source mechanism inversion.From tens of seconds to a couple of minutes at most,the final seismic attributes can be presented remotely to the end users through the integrated system.From May 27 to June 17,the real-time system has detected and located 7905 aftershocks in the Yangbi area before the internal batteries exhausted,far more than the catalog provided by China Earthquake Networks Center using the regional permanent stations.The initial application of this inte-grated real-time monitoring system is promising,and we anticipate the advent of a new era for Real-time Intelligent Array Seismology(RIAS),for better monitoring and understanding the subsurface dynamic pro-cesses caused by Earth's internal forces as well as anthropogenic activities.展开更多
Objoctive To investigate the techniques and clinical applications ofmultislice helical computed tomography (CT) colonography in colonic lesions. Methods Fifty-nine patients with malignant lesions of colon underwent...Objoctive To investigate the techniques and clinical applications ofmultislice helical computed tomography (CT) colonography in colonic lesions. Methods Fifty-nine patients with malignant lesions of colon underwent volume scanning using multislice helical CT. Four types of reconstruction including CT virtual colonoscopy (CTVC), shaded surface display (SSD), Raysum, and multiple planar reconstruction (MPR) were used for image post-processing. The results were compared with those of colonoscopy and pathology. Results Multislice helical CT colonography detected 54 colorectal carcinomas, 4 adenomas with focal carcinoma, 1 non-Hodgkin's lymphoma (NHL). The lesions' number, size, location, morphology, stricture of intestinal cavity, infiltration, and metastasis were shown satisfactorily by multislice helical CT colonography. Whole colon could be shown in all patients. CT colonography displayed 4 synchronous colonic tumors, 1 ascending colon carcinoma combined with left renal carcinoma among 54 patients with colonic carcinomas. The accuracy of location of CT colonography was 100%. There were 9 cases that CT showed the tumor location was different from the finding of conventional colonoscopy, while all of the CT location were proven exact by operation. CT colonography also displayed the infiltration of serous layer and fatty tissue in 45 cases; 21 cases matched the pathological results in all the 24 cases of suspicious lymph node metastasis, the sensitivity was 87.5%, the specificity was 90.6%; 9 cases hepatic metastasis, 2 ovarian metastasis, and 1 double adrenal gland metastasis. Conclusions Multislice helical CT colonography is effective in preoperative diagnosis, location, stage, and making treatment plan of colorectal carcinoma. It can display the portion not seen during colonoscopy and may have an adjunctive role.展开更多
High quality GdBa2Cu307-y (Gd123) textured bulks with Nd2BaCuO5 (Nd211) nanoparticle precipitations have been fabricated by a nanoparticle-powders-assisted MTG (melt-textured-growth) technique. The high density ...High quality GdBa2Cu307-y (Gd123) textured bulks with Nd2BaCuO5 (Nd211) nanoparticle precipitations have been fabricated by a nanoparticle-powders-assisted MTG (melt-textured-growth) technique. The high density nanoscale flux pinning sites were introduced into Gd123 by mixing Nd211 nanoparticle powders (about 20-50 nm) with Gd123 nano-precursors before the MTG process. Microstructural analyses reveal that a large number of Nd211 nanoparticles with a size around 50-150 nm were inserted in the Gd123 matrix, forming a kind of superconducting nanocomposites. The critical current density at 77 K is systematically increased and the flux pinning behavior is significantly improved. The scaling behavior of the flux pinning force shows a magnetic field dependent feature with a peak located at hp≈0.4. This may be the fingerprint of melt-textured 123 compounds, which cannot be interpreted by the simple superposition of different types of elementary pinning sources.展开更多
The degradation of Microcystin-LR (MC-LR) in water by hydrogen peroxide assisted ultraviolet (UV/H2O2) process was investigated in this paper. The UV/H2O2 process appeared to be effective in removal of the MC-LR. MC-L...The degradation of Microcystin-LR (MC-LR) in water by hydrogen peroxide assisted ultraviolet (UV/H2O2) process was investigated in this paper. The UV/H2O2 process appeared to be effective in removal of the MC-LR. MC-LR decomposition was primarily ascribed to production of strong and nonselective oxidant-hydroxyl radicals within the system. The intensity of UV radiation, initial concentration of MC-LR, MC-LR purity, dosages of H2O2, the initial solution pH, and anions present in water, to some extent, influenced the degradation rate of MC-LR. A modified pseudo-first-order kinetic model was developed to predict the removal efficiency under different experimental conditions.展开更多
文摘We describes a controllable synthesis procedure for growing a-Ee2O3 and Ee3O4 nanowires. High magnetic hematite a-Fe2O3 nanowires are successfully grown on Fe0.5Ni0.5 alloy substrates via an oxide assisted vapor-solid process. Experimental results also indicate that previous immersion of the substrates in a solution of oxalic acid causes the grown nanowires to convert gradually into magnetite (Fe3O4) nanowires. Additionally, the saturated state of Fe3O4 nanowires is achieved as the oxalic acid concentration reaches 0.75 mol/L. The average diameter and length of nanowires expands with an increasing operation temperature and the growth density of nanowires accumulates with an increasing gas flux in the vapor-solid process. The growth mechanism of a-Fe2O3 and Fe3O4 nanowires is also discussed. The results demonstrate that the entire synthesis of nanowires can be completed within 2 h.
基金supported by the National Natural Science Foundation of China (under grants 41874048,41790464,41790462).
文摘A rapidly deployable dense seismic monitoring system which is capable of transmitting acquired data in real time and analyzing data automatically is crucial in seismic hazard mitigation after a major earthquake.However,it is rather difficult for current seismic nodal stations to transmit data in real time for an extended period of time,and it usually takes a great amount of time to process the acquired data manually.To monitor earthquakes in real time flexibly,we develop a mobile integrated seismic monitoring system consisting of newly developed nodal units with 4G telemetry and a real-time AI-assisted automatic data processing workflow.The integrated system is convenient for deployment and has been successfully applied in monitoring the aftershocks of the Yangbi M_(S) 6.4 earthquake occurred on May 21,2021 in Yangbi County,Dali,Yunnan in southwest China.The acquired seismic data are transmitted almost in real time through the 4G cellular network,and then processed automat-ically for event detection,positioning,magnitude calculation and source mechanism inversion.From tens of seconds to a couple of minutes at most,the final seismic attributes can be presented remotely to the end users through the integrated system.From May 27 to June 17,the real-time system has detected and located 7905 aftershocks in the Yangbi area before the internal batteries exhausted,far more than the catalog provided by China Earthquake Networks Center using the regional permanent stations.The initial application of this inte-grated real-time monitoring system is promising,and we anticipate the advent of a new era for Real-time Intelligent Array Seismology(RIAS),for better monitoring and understanding the subsurface dynamic pro-cesses caused by Earth's internal forces as well as anthropogenic activities.
文摘Objoctive To investigate the techniques and clinical applications ofmultislice helical computed tomography (CT) colonography in colonic lesions. Methods Fifty-nine patients with malignant lesions of colon underwent volume scanning using multislice helical CT. Four types of reconstruction including CT virtual colonoscopy (CTVC), shaded surface display (SSD), Raysum, and multiple planar reconstruction (MPR) were used for image post-processing. The results were compared with those of colonoscopy and pathology. Results Multislice helical CT colonography detected 54 colorectal carcinomas, 4 adenomas with focal carcinoma, 1 non-Hodgkin's lymphoma (NHL). The lesions' number, size, location, morphology, stricture of intestinal cavity, infiltration, and metastasis were shown satisfactorily by multislice helical CT colonography. Whole colon could be shown in all patients. CT colonography displayed 4 synchronous colonic tumors, 1 ascending colon carcinoma combined with left renal carcinoma among 54 patients with colonic carcinomas. The accuracy of location of CT colonography was 100%. There were 9 cases that CT showed the tumor location was different from the finding of conventional colonoscopy, while all of the CT location were proven exact by operation. CT colonography also displayed the infiltration of serous layer and fatty tissue in 45 cases; 21 cases matched the pathological results in all the 24 cases of suspicious lymph node metastasis, the sensitivity was 87.5%, the specificity was 90.6%; 9 cases hepatic metastasis, 2 ovarian metastasis, and 1 double adrenal gland metastasis. Conclusions Multislice helical CT colonography is effective in preoperative diagnosis, location, stage, and making treatment plan of colorectal carcinoma. It can display the portion not seen during colonoscopy and may have an adjunctive role.
基金supported in part by the National Natural Science Foundation of China (No. 50872116)the Fundamental Research Funds for the Central Universities of China (No. SWJTU09ZT24)+1 种基金the PCSIRT of the Ministry of Education of China (No.IRT0751)the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 200806130023)
文摘High quality GdBa2Cu307-y (Gd123) textured bulks with Nd2BaCuO5 (Nd211) nanoparticle precipitations have been fabricated by a nanoparticle-powders-assisted MTG (melt-textured-growth) technique. The high density nanoscale flux pinning sites were introduced into Gd123 by mixing Nd211 nanoparticle powders (about 20-50 nm) with Gd123 nano-precursors before the MTG process. Microstructural analyses reveal that a large number of Nd211 nanoparticles with a size around 50-150 nm were inserted in the Gd123 matrix, forming a kind of superconducting nanocomposites. The critical current density at 77 K is systematically increased and the flux pinning behavior is significantly improved. The scaling behavior of the flux pinning force shows a magnetic field dependent feature with a peak located at hp≈0.4. This may be the fingerprint of melt-textured 123 compounds, which cannot be interpreted by the simple superposition of different types of elementary pinning sources.
基金supported by the National Key Technologies Supporting Program of China during the 11th Five-Year Plan Period (No. 2006BAJ08B06)the National Major Project of Science & Technology Ministry of China (No. 2008ZX07421-002)the Shanghai Science & Technology Commission Key Scientific & Technological Project (No. 072312001), China
文摘The degradation of Microcystin-LR (MC-LR) in water by hydrogen peroxide assisted ultraviolet (UV/H2O2) process was investigated in this paper. The UV/H2O2 process appeared to be effective in removal of the MC-LR. MC-LR decomposition was primarily ascribed to production of strong and nonselective oxidant-hydroxyl radicals within the system. The intensity of UV radiation, initial concentration of MC-LR, MC-LR purity, dosages of H2O2, the initial solution pH, and anions present in water, to some extent, influenced the degradation rate of MC-LR. A modified pseudo-first-order kinetic model was developed to predict the removal efficiency under different experimental conditions.