Background:Four classical Traditional Chinese Medicine prescriptions,namely Gualou Xiebai Baijiu decoction,Gualou Xiebai Banxia decoction(GLXBBX),Zhishi Xiebai Guizhi decoction(ZSXBGZ)and Danlou prescription(DL),have ...Background:Four classical Traditional Chinese Medicine prescriptions,namely Gualou Xiebai Baijiu decoction,Gualou Xiebai Banxia decoction(GLXBBX),Zhishi Xiebai Guizhi decoction(ZSXBGZ)and Danlou prescription(DL),have been frequently used for treatment of phlegm and blood stasis syndrome(PBSS)-related cardiovascular diseases.However,its therapeutic mechanism has not been clearly elucidated.This study aimed to explore PBSS and its molecular mechanism,clarify and compare the mechanisms of four prescriptions in treating PBSS-related diseases.Method:In this study,we collected four prescriptions’compounds,predicted therapeutic targets,and enriched pathways which were based on network pharmacology.Then,we analysed the commen and different mechanisms by combing the network of components,targets and pathways.Finally,molecular docking was engaged to assess the binding potential of key compounds and hub targets.Results:We showed that four prescriptions’intersection genes(VEGFA,SRC,EGFR,etc.)were commonly enriched in PI3K-AKT signaling pathway,HIF-1 signaling pathway,etc.In addition,platelet activation and cAMP signaling pathway were singly enriched from the GLXBBX through unique compounds 12,13-epoxy-9-hydroxynonadeca-7,10-dienoic acid and Cyclo(L-tyrosyl-L-phenylalanyl).These bioactive compounds may exert GLXBBX’s unique pharmacological pathways via involving in mediating PPARA,PTGER3,etc.Sphingolipid signaling pathway was singly enriched from the ZSXBGZ through unique compounds tetramethoxyluteolin,ergosterol peroxide,etc.These bioactive compounds could mediate ADORA1,ADORA3 and TNFRSF1A to regulate ZSXBGZ’s unique pharmacological pathways.AMPK signaling pathway was singly enriched from the DL through unique compounds kaempferol,evofolinb,ethyl acid and aureusidin.These bioactive compounds were involved in mediating the main targets of AMPK signaling pathway,such as TNF,TNFRSF1A,etc.Conclusions:Our research demonstrated that GLXB-prescriptions involved in almost all pathological stages of PBSS-related cardiovascular diseases by modulating high-frequency shared pathways and targets mainly through key compounds(quercetin,mandenol,sitosteryl acetate and luteolin,etc.),for example,participate in the process of atherosclerosis,lipid metabolism,inflammation,immune response,thrombosis,inhibit inflammatory factors and platelet aggregation,regulate immune function,vascular function,oxidative stress.In addition to common pharmacological efficacies,there could also be specificities among GLXB prescriptions due to different compounds.For example,GLXBBX tends to regulate the function of vascular and endothelial barrier,prevent thrombosis.ZSXBGZ tends to regulate lipid metabolism and protect the heart from lipid accumulation.DL tends to maintain energy homeostasis and improve inflammation.展开更多
基金supportes by National Natural Science Foundation of China(Grant no.82274137,81873038)Natural Science Foundation of Anhui Province(2208085MH275)+2 种基金Natural Science Research Project of Anhui Provincial Department of Education(KJ2021A0592)Anhui University Scientific Research Project(YJS20210488)the 7th China International College Studengts“Internet+”Innovation and entrepreneurship Competition(S202110369046).
文摘Background:Four classical Traditional Chinese Medicine prescriptions,namely Gualou Xiebai Baijiu decoction,Gualou Xiebai Banxia decoction(GLXBBX),Zhishi Xiebai Guizhi decoction(ZSXBGZ)and Danlou prescription(DL),have been frequently used for treatment of phlegm and blood stasis syndrome(PBSS)-related cardiovascular diseases.However,its therapeutic mechanism has not been clearly elucidated.This study aimed to explore PBSS and its molecular mechanism,clarify and compare the mechanisms of four prescriptions in treating PBSS-related diseases.Method:In this study,we collected four prescriptions’compounds,predicted therapeutic targets,and enriched pathways which were based on network pharmacology.Then,we analysed the commen and different mechanisms by combing the network of components,targets and pathways.Finally,molecular docking was engaged to assess the binding potential of key compounds and hub targets.Results:We showed that four prescriptions’intersection genes(VEGFA,SRC,EGFR,etc.)were commonly enriched in PI3K-AKT signaling pathway,HIF-1 signaling pathway,etc.In addition,platelet activation and cAMP signaling pathway were singly enriched from the GLXBBX through unique compounds 12,13-epoxy-9-hydroxynonadeca-7,10-dienoic acid and Cyclo(L-tyrosyl-L-phenylalanyl).These bioactive compounds may exert GLXBBX’s unique pharmacological pathways via involving in mediating PPARA,PTGER3,etc.Sphingolipid signaling pathway was singly enriched from the ZSXBGZ through unique compounds tetramethoxyluteolin,ergosterol peroxide,etc.These bioactive compounds could mediate ADORA1,ADORA3 and TNFRSF1A to regulate ZSXBGZ’s unique pharmacological pathways.AMPK signaling pathway was singly enriched from the DL through unique compounds kaempferol,evofolinb,ethyl acid and aureusidin.These bioactive compounds were involved in mediating the main targets of AMPK signaling pathway,such as TNF,TNFRSF1A,etc.Conclusions:Our research demonstrated that GLXB-prescriptions involved in almost all pathological stages of PBSS-related cardiovascular diseases by modulating high-frequency shared pathways and targets mainly through key compounds(quercetin,mandenol,sitosteryl acetate and luteolin,etc.),for example,participate in the process of atherosclerosis,lipid metabolism,inflammation,immune response,thrombosis,inhibit inflammatory factors and platelet aggregation,regulate immune function,vascular function,oxidative stress.In addition to common pharmacological efficacies,there could also be specificities among GLXB prescriptions due to different compounds.For example,GLXBBX tends to regulate the function of vascular and endothelial barrier,prevent thrombosis.ZSXBGZ tends to regulate lipid metabolism and protect the heart from lipid accumulation.DL tends to maintain energy homeostasis and improve inflammation.