This study explores the factors influencing metro passengers’ arrival volume in Wuhan, China, and Lagos, Nigeria, by examining weather, time of day, waiting time, travel behavior, arrival patterns, and metro satisfac...This study explores the factors influencing metro passengers’ arrival volume in Wuhan, China, and Lagos, Nigeria, by examining weather, time of day, waiting time, travel behavior, arrival patterns, and metro satisfaction. It addresses a significant research gap in understanding metro passengers’ dynamics across cultural and geographical contexts. It employs questionnaires, field observations, and advanced data analysis techniques like association rule mining and neural network modeling. Key findings include a correlation between rainy weather, shorter waiting times, and higher arrival volumes. Neural network models showed high predictive accuracy, with waiting time, metro satisfaction, and weather being significant factors in Lagos Light Rail Blue Line Metro. In contrast, arrival patterns, weather, and time of day were more influential in Wuhan Metro Line 5. Results suggest that improving metro satisfaction and reducing waiting times could increase arrival volumes in Lagos Metro while adjusting schedules for weather and peak times could optimize flow in Wuhan Metro. These insights are valuable for transportation planning, passenger arrival volume management, and enhancing user experiences, potentially benefiting urban transportation sustainability and development goals.展开更多
BACKGROUND It is increasingly common to find patients affected by a combination of type 2 diabetes mellitus(T2DM)and coronary artery disease(CAD),and studies are able to correlate their relationships with available bi...BACKGROUND It is increasingly common to find patients affected by a combination of type 2 diabetes mellitus(T2DM)and coronary artery disease(CAD),and studies are able to correlate their relationships with available biological and clinical evidence.The aim of the current study was to apply association rule mining(ARM)to discover whether there are consistent patterns of clinical features relevant to these diseases.ARM leverages clinical and laboratory data to the meaningful patterns for diabetic CAD by harnessing the power help of data-driven algorithms to optimise the decision-making in patient care.AIM To reinforce the evidence of the T2DM-CAD interplay and demonstrate the ability of ARM to provide new insights into multivariate pattern discovery.METHODS This cross-sectional study was conducted at the Department of Biochemistry in a specialized tertiary care centre in Delhi,involving a total of 300 consented subjects categorized into three groups:CAD with diabetes,CAD without diabetes,and healthy controls,with 100 subjects in each group.The participants were enrolled from the Cardiology IPD&OPD for the sample collection.The study employed ARM technique to extract the meaningful patterns and relationships from the clinical data with its original value.RESULTS The clinical dataset comprised 35 attributes from enrolled subjects.The analysis produced rules with a maximum branching factor of 4 and a rule length of 5,necessitating a 1%probability increase for enhancement.Prominent patterns emerged,highlighting strong links between health indicators and diabetes likelihood,particularly elevated HbA1C and random blood sugar levels.The ARM technique identified individuals with a random blood sugar level>175 and HbA1C>6.6 are likely in the“CAD-with-diabetes”group,offering valuable insights into health indicators and influencing factors on disease outcomes.CONCLUSION The application of this method holds promise for healthcare practitioners to offer valuable insights for enhancing patient treatment targeting specific subtypes of CAD with diabetes.Implying artificial intelligence techniques with medical data,we have shown the potential for personalized healthcare and the development of user-friendly applications aimed at improving cardiovascular health outcomes for this high-risk population to optimise the decision-making in patient care.展开更多
Maximum frequent pattern generation from a large database of transactions and items for association rule mining is an important research topic in data mining. Association rule mining aims to discover interesting corre...Maximum frequent pattern generation from a large database of transactions and items for association rule mining is an important research topic in data mining. Association rule mining aims to discover interesting correlations, frequent patterns, associations, or causal structures between items hidden in a large database. By exploiting quantum computing, we propose an efficient quantum search algorithm design to discover the maximum frequent patterns. We modified Grover’s search algorithm so that a subspace of arbitrary symmetric states is used instead of the whole search space. We presented a novel quantum oracle design that employs a quantum counter to count the maximum frequent items and a quantum comparator to check with a minimum support threshold. The proposed derived algorithm increases the rate of the correct solutions since the search is only in a subspace. Furthermore, our algorithm significantly scales and optimizes the required number of qubits in design, which directly reflected positively on the performance. Our proposed design can accommodate more transactions and items and still have a good performance with a small number of qubits.展开更多
Frequent item sets mining plays an important role in association rules mining. A variety of algorithms for finding frequent item sets in very large transaction databases have been developed. Although many techniques w...Frequent item sets mining plays an important role in association rules mining. A variety of algorithms for finding frequent item sets in very large transaction databases have been developed. Although many techniques were proposed for maintenance of the discovered rules when new transactions are added, little work is done for maintaining the discovered rules when some transactions are deleted from the database. Updates are fundamental aspect of data management. In this paper, a decremental association rules mining algorithm is present for updating the discovered association rules when some transactions are removed from the original data set. Extensive experiments were conducted to evaluate the performance of the proposed algorithm. The results show that the proposed algorithm is efficient and outperforms other well-known algorithms.展开更多
An association rules mining method based on semantic relativity is proposed to solve the problem that there are more candidate item sets and higher time complexity in traditional association rules mining.Semantic rela...An association rules mining method based on semantic relativity is proposed to solve the problem that there are more candidate item sets and higher time complexity in traditional association rules mining.Semantic relativity of ontology concepts is used to describe complicated relationships of domains in the method.Candidate item sets with less semantic relativity are filtered to reduce the number of candidate item sets in association rules mining.An ontology hierarchy relationship is regarded as a directed acyclic graph rather than a hierarchy tree in the semantic relativity computation.Not only direct hierarchy relationships,but also non-direct hierarchy relationships and other typical semantic relationships are taken into account.Experimental results show that the proposed method can reduce the number of candidate item sets effectively and improve the efficiency of association rules mining.展开更多
In this paper, we propose an efficient algorithm, called FFP-Growth (shortfor fast FP-Growth) , to mine frequent itemsets. Similar to FP-Growth, FFP-Growth searches theFP-tree in the bottom-up order, but need not cons...In this paper, we propose an efficient algorithm, called FFP-Growth (shortfor fast FP-Growth) , to mine frequent itemsets. Similar to FP-Growth, FFP-Growth searches theFP-tree in the bottom-up order, but need not construct conditional pattern bases and sub-FP-trees,thus, saving a substantial amount of time and space, and the FP-tree created by it is much smallerthan that created by TD-FP-Growth, hence improving efficiency. At the same time, FFP-Growth can beeasily extended for reducing the search space as TD-FP-Growth (M) and TD-FP-Growth (C). Experimentalresults show that the algorithm of this paper is effective and efficient.展开更多
The conventional complete association rule set was replaced by the least association rule set in data warehouse association rule mining process. The least association rule set should comply with two requirements: 1) i...The conventional complete association rule set was replaced by the least association rule set in data warehouse association rule mining process. The least association rule set should comply with two requirements: 1) it should be the minimal and the simplest association rule set; 2) its predictive power should in no way be weaker than that of the complete association rule set so that the precision of the association rule set analysis can be guaranteed. By adopting the least association rule set, the pruning of weak rules can be effectively carried out so as to greatly reduce the number of frequent itemset, and therefore improve the mining efficiency. Finally, based on the classical Apriori algorithm, the upward closure property of weak rules is utilized to develop a corresponding efficient algorithm.展开更多
The traditional generalization-based knowledge discovery method is introduced. A new kind of multilevel spatial association of the rules mining method based on the cloud model is presented. The cloud model integrates ...The traditional generalization-based knowledge discovery method is introduced. A new kind of multilevel spatial association of the rules mining method based on the cloud model is presented. The cloud model integrates the vague and random use of linguistic terms in a unified way. With these models, spatial and nonspatial attribute values are well generalized at multiple levels, allowing discovery of strong spatial association rules. Combining the cloud model based method with Apriori algorithms for mining association rules from a spatial database shows benefits in being effective and flexible.展开更多
Association rule mining methods, as a set of important data mining tools, could be used for mining spatial association rules of spatial data. However, applications of these methods are limited for mining results conta...Association rule mining methods, as a set of important data mining tools, could be used for mining spatial association rules of spatial data. However, applications of these methods are limited for mining results containing large number of redundant rules. In this paper, a new method named Geo-Filtered Association Rules Mining(GFARM) is proposed to effectively eliminate the redundant rules. An application of GFARM is performed as a case study in which association rules are discovered between building land distribution and potential driving factors in Wuhan, China from 1995 to 2015. Ten sets of regular sampling grids with different sizes are used for detecting the influence of multi-scales on GFARM. Results show that the proposed method can filter 50%–70% of redundant rules. GFARM is also successful in discovering spatial association pattern between building land distribution and driving factors.展开更多
As the growing interest of web recommendation systems those are applied to deliver customized data for their users, we started working on this system. Generally the recommendation systems are divided into two major ca...As the growing interest of web recommendation systems those are applied to deliver customized data for their users, we started working on this system. Generally the recommendation systems are divided into two major categories such as collaborative recommendation system and content based recommendation system. In case of collaborative recommendation systems, these try to seek out users who share same tastes that of given user as well as recommends the websites according to the liking given user. Whereas the content based recommendation systems tries to recommend web sites similar to those web sites the user has liked. In the recent research we found that the efficient technique based on association rule mining algorithm is proposed in order to solve the problem of web page recommendation. Major problem of the same is that the web pages are given equal importance. Here the importance of pages changes according to the frequency of visiting the web page as well as amount of time user spends on that page. Also recommendation of newly added web pages or the pages that are not yet visited by users is not included in the recommendation set. To overcome this problem, we have used the web usage log in the adaptive association rule based web mining where the association rules were applied to personalization. This algorithm was purely based on the Apriori data mining algorithm in order to generate the association rules. However this method also suffers from some unavoidable drawbacks. In this paper we are presenting and investigating the new approach based on weighted Association Rule Mining Algorithm and text mining. This is improved algorithm which adds semantic knowledge to the results, has more efficiency and hence gives better quality and performances as compared to existing approaches.展开更多
HA (hashing array), a new algorithm, for mining frequent itemsets of large database is proposed. It employs a structure hash array, ltemArray ( ) to store the information of database and then uses it instead of da...HA (hashing array), a new algorithm, for mining frequent itemsets of large database is proposed. It employs a structure hash array, ltemArray ( ) to store the information of database and then uses it instead of database in later iteration. By this improvement, only twice scanning of the whole database is necessary, thereby the computational cost can be reduced significantly. To overcome the performance bottleneck of frequent 2-itemsets mining, a modified algorithm of HA, DHA (directaddressing hashing and array) is proposed, which combines HA with direct-addressing hashing technique. The new hybrid algorithm, DHA, not only overcomes the performance bottleneck but also inherits the advantages of HA. Extensive simulations are conducted in this paper to evaluate the performance of the proposed new algorithm, and the results prove the new algorithm is more efficient and reasonable.展开更多
Data-mining techniques have been developed to turn data into useful task-oriented knowledge. Most algorithms for mining association rules identify relationships among transactions using binary values and find rules at...Data-mining techniques have been developed to turn data into useful task-oriented knowledge. Most algorithms for mining association rules identify relationships among transactions using binary values and find rules at a single-concept level. Extracting multilevel association rules in transaction databases is most commonly used in data mining. This paper proposes a multilevel fuzzy association rule mining model for extraction of implicit knowledge which stored as quantitative values in transactions. For this reason it uses different support value at each level as well as different membership function for each item. By integrating fuzzy-set concepts, data-mining technologies and multiple-level taxonomy, our method finds fuzzy association rules from transaction data sets. This approach adopts a top-down progressively deepening approach to derive large itemsets and also incorporates fuzzy boundaries instead of sharp boundary intervals. Comparing our method with previous ones in simulation shows that the proposed method maintains higher precision, the mined rules are closer to reality, and it gives ability to mine association rules at different levels based on the user’s tendency as well.展开更多
The Apriori algorithm is a classical method of association rules mining.Based on analysis of this theory,the paper provides an improved Apriori algorithm.The paper puts foward with algorithm combines HASH table techni...The Apriori algorithm is a classical method of association rules mining.Based on analysis of this theory,the paper provides an improved Apriori algorithm.The paper puts foward with algorithm combines HASH table technique and reduction of candidate item sets to enhance the usage efficiency of resources as well as the individualized service of the data library.展开更多
Typical association rules consider only items enumerated in transactions. Such rules are referred to as positive association rules. Negative association rules also consider the same items, but in addition consider neg...Typical association rules consider only items enumerated in transactions. Such rules are referred to as positive association rules. Negative association rules also consider the same items, but in addition consider negated items (i. e. absent from transactions). Negative association rules are useful in market-basket analysis to identify products that conflict with each other or products that complement each other. They are also very convenient for associative classifiers, classifiers that build their classification model based on association rules. Indeed, mining for such rules necessitates the examination of an exponentially large search space. Despite their usefulness, very few algorithms to mine them have been proposed to date. In this paper, an algorithm based on FP tree is presented to discover negative association rules.展开更多
Association rule mining is an important issue in data mining. The paper proposed an binary system based method to generate candidate frequent itemsets and corresponding supporting counts efficiently, which needs only ...Association rule mining is an important issue in data mining. The paper proposed an binary system based method to generate candidate frequent itemsets and corresponding supporting counts efficiently, which needs only some operations such as "and", "or" and "xor". Applying this idea in the existed distributed association rule mining al gorithm FDM, the improved algorithm BFDM is proposed. The theoretical analysis and experiment testify that BFDM is effective and efficient.展开更多
Hotspots (active fires) indicate spatial distribution of fires. A study on determining influence factors for hotspot occurrence is essential so that fire events can be predicted based on characteristics of a certain a...Hotspots (active fires) indicate spatial distribution of fires. A study on determining influence factors for hotspot occurrence is essential so that fire events can be predicted based on characteristics of a certain area. This study discovers the possible influence factors on the occurrence of fire events using the association rule algorithm namely Apriori in the study area of Rokan Hilir Riau Province Indonesia. The Apriori algorithm was applied on a forest fire dataset which containeddata on physical environment (land cover, river, road and city center), socio-economic (income source, population, and number of school), weather (precipitation, wind speed, and screen temperature), and peatlands. The experiment results revealed 324 multidimensional association rules indicating relationships between hotspots occurrence and other factors.The association among hotspots occurrence with other geographical objects was discovered for the minimum support of 10% and the minimum confidence of 80%. The results show that strong relations between hotspots occurrence and influence factors are found for the support about 12.42%, the confidence of 1, and the lift of 2.26. These factors are precipitation greater than or equal to 3 mm/day, wind speed in [1m/s, 2m/s), non peatland area, screen temperature in [297K, 298K), the number of school in 1 km2 less than or equal to 0.1, and the distance of each hotspot to the nearest road less than or equal to 2.5 km.展开更多
Mining association rules from large database is very costly. We develop a parallel algorithm for this task on shared-memory multiprocessor (SMP). Most proposed parallel algorithms for association rules mining have to ...Mining association rules from large database is very costly. We develop a parallel algorithm for this task on shared-memory multiprocessor (SMP). Most proposed parallel algorithms for association rules mining have to scan the database at least two times. In this article, a parallel algorithm Scan Once (SO) has been proposed for SMP, which only scans the database once. And this algorithm is fundamentally different from the known parallel algorithm Count Distribution (CD). It adopts bit matrix to store the database information and gets the support of the frequent itemsets by adopting Vector-And-Operation, which greatly improve the efficiency of generating all frequent itemsets. Empirical evaluation shows that the algorithm outperforms the known one CD algorithm.展开更多
In this letter, on the basis of Frequent Pattern(FP) tree, the support function to update FP-tree is introduced, then an Incremental FP (IFP) algorithm for mining association rules is proposed. IFP algorithm considers...In this letter, on the basis of Frequent Pattern(FP) tree, the support function to update FP-tree is introduced, then an Incremental FP (IFP) algorithm for mining association rules is proposed. IFP algorithm considers not only adding new data into the database but also reducing old data from the database. Furthermore, it can predigest five cases to three cases.The algorithm proposed in this letter can avoid generating lots of candidate items, and it is high efficient.展开更多
The traditional library can’t provide the service of personalized recommendation for users. This paper used Clementine to solve this problem. Firstly, model of K-means clustering analyze the initial data to delete th...The traditional library can’t provide the service of personalized recommendation for users. This paper used Clementine to solve this problem. Firstly, model of K-means clustering analyze the initial data to delete the redundant data. It can avoid scanning the database repeatedly and producing a large number of false rules. Secondly, the paper used clustering results to perform association rule mining. It can obtain valuable information and achieve the service of intelligent recommendation.展开更多
In data mining from transaction DB, the relationships between the attributes have been focused, but the relationships between the tuples have not been taken into account. In spatial database, there are relationships b...In data mining from transaction DB, the relationships between the attributes have been focused, but the relationships between the tuples have not been taken into account. In spatial database, there are relationships between the attributes and the tuples, and most of the associations occur between the tuples, such as adjacent, intersection, overlap and other topological relationships. So the tasks of spatial data association rules mining include mining the relationships between attributes of spatial objects, which are called as vertical direction DM, and the relationships between the tuples, which are called as horizontal direction DM. This paper analyzes the storage models of spatial data, uses for reference the technologies of data mining in transaction DB, defines the spatial data association rule, including vertical direction association rule, horizontal direction association rule and two-direction association rule, discusses the measurement of spatial association rule interestingness, and puts forward the work flows of spatial association rule data mining. During two-direction spatial association rules mining, an algorithm is proposed to get non-spatial itemsets. By virtue of spatial analysis, the spatial relations were transferred into non-spatial associations and the non-spatial itemsets were gotten. Based on the non-spatial itemsets, the Apriori algorithm or other algorithms could be used to get the frequent itemsets and then the spatial association rules come into being. Using spatial DB, the spatial association rules were gotten to validate the algorithm, and the test results show that this algorithm is efficient and can mine the interesting spatial rules.展开更多
文摘This study explores the factors influencing metro passengers’ arrival volume in Wuhan, China, and Lagos, Nigeria, by examining weather, time of day, waiting time, travel behavior, arrival patterns, and metro satisfaction. It addresses a significant research gap in understanding metro passengers’ dynamics across cultural and geographical contexts. It employs questionnaires, field observations, and advanced data analysis techniques like association rule mining and neural network modeling. Key findings include a correlation between rainy weather, shorter waiting times, and higher arrival volumes. Neural network models showed high predictive accuracy, with waiting time, metro satisfaction, and weather being significant factors in Lagos Light Rail Blue Line Metro. In contrast, arrival patterns, weather, and time of day were more influential in Wuhan Metro Line 5. Results suggest that improving metro satisfaction and reducing waiting times could increase arrival volumes in Lagos Metro while adjusting schedules for weather and peak times could optimize flow in Wuhan Metro. These insights are valuable for transportation planning, passenger arrival volume management, and enhancing user experiences, potentially benefiting urban transportation sustainability and development goals.
文摘BACKGROUND It is increasingly common to find patients affected by a combination of type 2 diabetes mellitus(T2DM)and coronary artery disease(CAD),and studies are able to correlate their relationships with available biological and clinical evidence.The aim of the current study was to apply association rule mining(ARM)to discover whether there are consistent patterns of clinical features relevant to these diseases.ARM leverages clinical and laboratory data to the meaningful patterns for diabetic CAD by harnessing the power help of data-driven algorithms to optimise the decision-making in patient care.AIM To reinforce the evidence of the T2DM-CAD interplay and demonstrate the ability of ARM to provide new insights into multivariate pattern discovery.METHODS This cross-sectional study was conducted at the Department of Biochemistry in a specialized tertiary care centre in Delhi,involving a total of 300 consented subjects categorized into three groups:CAD with diabetes,CAD without diabetes,and healthy controls,with 100 subjects in each group.The participants were enrolled from the Cardiology IPD&OPD for the sample collection.The study employed ARM technique to extract the meaningful patterns and relationships from the clinical data with its original value.RESULTS The clinical dataset comprised 35 attributes from enrolled subjects.The analysis produced rules with a maximum branching factor of 4 and a rule length of 5,necessitating a 1%probability increase for enhancement.Prominent patterns emerged,highlighting strong links between health indicators and diabetes likelihood,particularly elevated HbA1C and random blood sugar levels.The ARM technique identified individuals with a random blood sugar level>175 and HbA1C>6.6 are likely in the“CAD-with-diabetes”group,offering valuable insights into health indicators and influencing factors on disease outcomes.CONCLUSION The application of this method holds promise for healthcare practitioners to offer valuable insights for enhancing patient treatment targeting specific subtypes of CAD with diabetes.Implying artificial intelligence techniques with medical data,we have shown the potential for personalized healthcare and the development of user-friendly applications aimed at improving cardiovascular health outcomes for this high-risk population to optimise the decision-making in patient care.
文摘Maximum frequent pattern generation from a large database of transactions and items for association rule mining is an important research topic in data mining. Association rule mining aims to discover interesting correlations, frequent patterns, associations, or causal structures between items hidden in a large database. By exploiting quantum computing, we propose an efficient quantum search algorithm design to discover the maximum frequent patterns. We modified Grover’s search algorithm so that a subspace of arbitrary symmetric states is used instead of the whole search space. We presented a novel quantum oracle design that employs a quantum counter to count the maximum frequent items and a quantum comparator to check with a minimum support threshold. The proposed derived algorithm increases the rate of the correct solutions since the search is only in a subspace. Furthermore, our algorithm significantly scales and optimizes the required number of qubits in design, which directly reflected positively on the performance. Our proposed design can accommodate more transactions and items and still have a good performance with a small number of qubits.
文摘Frequent item sets mining plays an important role in association rules mining. A variety of algorithms for finding frequent item sets in very large transaction databases have been developed. Although many techniques were proposed for maintenance of the discovered rules when new transactions are added, little work is done for maintaining the discovered rules when some transactions are deleted from the database. Updates are fundamental aspect of data management. In this paper, a decremental association rules mining algorithm is present for updating the discovered association rules when some transactions are removed from the original data set. Extensive experiments were conducted to evaluate the performance of the proposed algorithm. The results show that the proposed algorithm is efficient and outperforms other well-known algorithms.
基金The National Natural Science Foundation of China(No.50674086)Specialized Research Fund for the Doctoral Program of Higher Education(No.20060290508)the Science and Technology Fund of China University of Mining and Technology(No.2007B016)
文摘An association rules mining method based on semantic relativity is proposed to solve the problem that there are more candidate item sets and higher time complexity in traditional association rules mining.Semantic relativity of ontology concepts is used to describe complicated relationships of domains in the method.Candidate item sets with less semantic relativity are filtered to reduce the number of candidate item sets in association rules mining.An ontology hierarchy relationship is regarded as a directed acyclic graph rather than a hierarchy tree in the semantic relativity computation.Not only direct hierarchy relationships,but also non-direct hierarchy relationships and other typical semantic relationships are taken into account.Experimental results show that the proposed method can reduce the number of candidate item sets effectively and improve the efficiency of association rules mining.
文摘In this paper, we propose an efficient algorithm, called FFP-Growth (shortfor fast FP-Growth) , to mine frequent itemsets. Similar to FP-Growth, FFP-Growth searches theFP-tree in the bottom-up order, but need not construct conditional pattern bases and sub-FP-trees,thus, saving a substantial amount of time and space, and the FP-tree created by it is much smallerthan that created by TD-FP-Growth, hence improving efficiency. At the same time, FFP-Growth can beeasily extended for reducing the search space as TD-FP-Growth (M) and TD-FP-Growth (C). Experimentalresults show that the algorithm of this paper is effective and efficient.
文摘The conventional complete association rule set was replaced by the least association rule set in data warehouse association rule mining process. The least association rule set should comply with two requirements: 1) it should be the minimal and the simplest association rule set; 2) its predictive power should in no way be weaker than that of the complete association rule set so that the precision of the association rule set analysis can be guaranteed. By adopting the least association rule set, the pruning of weak rules can be effectively carried out so as to greatly reduce the number of frequent itemset, and therefore improve the mining efficiency. Finally, based on the classical Apriori algorithm, the upward closure property of weak rules is utilized to develop a corresponding efficient algorithm.
文摘The traditional generalization-based knowledge discovery method is introduced. A new kind of multilevel spatial association of the rules mining method based on the cloud model is presented. The cloud model integrates the vague and random use of linguistic terms in a unified way. With these models, spatial and nonspatial attribute values are well generalized at multiple levels, allowing discovery of strong spatial association rules. Combining the cloud model based method with Apriori algorithms for mining association rules from a spatial database shows benefits in being effective and flexible.
基金Under the auspices of Special Fund of Ministry of Land and Resources of China in Public Interest(No.201511001)
文摘Association rule mining methods, as a set of important data mining tools, could be used for mining spatial association rules of spatial data. However, applications of these methods are limited for mining results containing large number of redundant rules. In this paper, a new method named Geo-Filtered Association Rules Mining(GFARM) is proposed to effectively eliminate the redundant rules. An application of GFARM is performed as a case study in which association rules are discovered between building land distribution and potential driving factors in Wuhan, China from 1995 to 2015. Ten sets of regular sampling grids with different sizes are used for detecting the influence of multi-scales on GFARM. Results show that the proposed method can filter 50%–70% of redundant rules. GFARM is also successful in discovering spatial association pattern between building land distribution and driving factors.
文摘As the growing interest of web recommendation systems those are applied to deliver customized data for their users, we started working on this system. Generally the recommendation systems are divided into two major categories such as collaborative recommendation system and content based recommendation system. In case of collaborative recommendation systems, these try to seek out users who share same tastes that of given user as well as recommends the websites according to the liking given user. Whereas the content based recommendation systems tries to recommend web sites similar to those web sites the user has liked. In the recent research we found that the efficient technique based on association rule mining algorithm is proposed in order to solve the problem of web page recommendation. Major problem of the same is that the web pages are given equal importance. Here the importance of pages changes according to the frequency of visiting the web page as well as amount of time user spends on that page. Also recommendation of newly added web pages or the pages that are not yet visited by users is not included in the recommendation set. To overcome this problem, we have used the web usage log in the adaptive association rule based web mining where the association rules were applied to personalization. This algorithm was purely based on the Apriori data mining algorithm in order to generate the association rules. However this method also suffers from some unavoidable drawbacks. In this paper we are presenting and investigating the new approach based on weighted Association Rule Mining Algorithm and text mining. This is improved algorithm which adds semantic knowledge to the results, has more efficiency and hence gives better quality and performances as compared to existing approaches.
文摘HA (hashing array), a new algorithm, for mining frequent itemsets of large database is proposed. It employs a structure hash array, ltemArray ( ) to store the information of database and then uses it instead of database in later iteration. By this improvement, only twice scanning of the whole database is necessary, thereby the computational cost can be reduced significantly. To overcome the performance bottleneck of frequent 2-itemsets mining, a modified algorithm of HA, DHA (directaddressing hashing and array) is proposed, which combines HA with direct-addressing hashing technique. The new hybrid algorithm, DHA, not only overcomes the performance bottleneck but also inherits the advantages of HA. Extensive simulations are conducted in this paper to evaluate the performance of the proposed new algorithm, and the results prove the new algorithm is more efficient and reasonable.
文摘Data-mining techniques have been developed to turn data into useful task-oriented knowledge. Most algorithms for mining association rules identify relationships among transactions using binary values and find rules at a single-concept level. Extracting multilevel association rules in transaction databases is most commonly used in data mining. This paper proposes a multilevel fuzzy association rule mining model for extraction of implicit knowledge which stored as quantitative values in transactions. For this reason it uses different support value at each level as well as different membership function for each item. By integrating fuzzy-set concepts, data-mining technologies and multiple-level taxonomy, our method finds fuzzy association rules from transaction data sets. This approach adopts a top-down progressively deepening approach to derive large itemsets and also incorporates fuzzy boundaries instead of sharp boundary intervals. Comparing our method with previous ones in simulation shows that the proposed method maintains higher precision, the mined rules are closer to reality, and it gives ability to mine association rules at different levels based on the user’s tendency as well.
文摘The Apriori algorithm is a classical method of association rules mining.Based on analysis of this theory,the paper provides an improved Apriori algorithm.The paper puts foward with algorithm combines HASH table technique and reduction of candidate item sets to enhance the usage efficiency of resources as well as the individualized service of the data library.
基金Supported by the National Natural Science Foun-dation of China(70371015) and the Science Foundation of JiangsuUniversity ( 04KJD001)
文摘Typical association rules consider only items enumerated in transactions. Such rules are referred to as positive association rules. Negative association rules also consider the same items, but in addition consider negated items (i. e. absent from transactions). Negative association rules are useful in market-basket analysis to identify products that conflict with each other or products that complement each other. They are also very convenient for associative classifiers, classifiers that build their classification model based on association rules. Indeed, mining for such rules necessitates the examination of an exponentially large search space. Despite their usefulness, very few algorithms to mine them have been proposed to date. In this paper, an algorithm based on FP tree is presented to discover negative association rules.
基金Supported by the National Natural Science Foun-dation of China (70371015)
文摘Association rule mining is an important issue in data mining. The paper proposed an binary system based method to generate candidate frequent itemsets and corresponding supporting counts efficiently, which needs only some operations such as "and", "or" and "xor". Applying this idea in the existed distributed association rule mining al gorithm FDM, the improved algorithm BFDM is proposed. The theoretical analysis and experiment testify that BFDM is effective and efficient.
文摘Hotspots (active fires) indicate spatial distribution of fires. A study on determining influence factors for hotspot occurrence is essential so that fire events can be predicted based on characteristics of a certain area. This study discovers the possible influence factors on the occurrence of fire events using the association rule algorithm namely Apriori in the study area of Rokan Hilir Riau Province Indonesia. The Apriori algorithm was applied on a forest fire dataset which containeddata on physical environment (land cover, river, road and city center), socio-economic (income source, population, and number of school), weather (precipitation, wind speed, and screen temperature), and peatlands. The experiment results revealed 324 multidimensional association rules indicating relationships between hotspots occurrence and other factors.The association among hotspots occurrence with other geographical objects was discovered for the minimum support of 10% and the minimum confidence of 80%. The results show that strong relations between hotspots occurrence and influence factors are found for the support about 12.42%, the confidence of 1, and the lift of 2.26. These factors are precipitation greater than or equal to 3 mm/day, wind speed in [1m/s, 2m/s), non peatland area, screen temperature in [297K, 298K), the number of school in 1 km2 less than or equal to 0.1, and the distance of each hotspot to the nearest road less than or equal to 2.5 km.
文摘Mining association rules from large database is very costly. We develop a parallel algorithm for this task on shared-memory multiprocessor (SMP). Most proposed parallel algorithms for association rules mining have to scan the database at least two times. In this article, a parallel algorithm Scan Once (SO) has been proposed for SMP, which only scans the database once. And this algorithm is fundamentally different from the known parallel algorithm Count Distribution (CD). It adopts bit matrix to store the database information and gets the support of the frequent itemsets by adopting Vector-And-Operation, which greatly improve the efficiency of generating all frequent itemsets. Empirical evaluation shows that the algorithm outperforms the known one CD algorithm.
基金Supported in part by the National Natural Science Foundation of China(No.60073012),Natural Science Foundation of Jiangsu(BK2001004)
文摘In this letter, on the basis of Frequent Pattern(FP) tree, the support function to update FP-tree is introduced, then an Incremental FP (IFP) algorithm for mining association rules is proposed. IFP algorithm considers not only adding new data into the database but also reducing old data from the database. Furthermore, it can predigest five cases to three cases.The algorithm proposed in this letter can avoid generating lots of candidate items, and it is high efficient.
文摘The traditional library can’t provide the service of personalized recommendation for users. This paper used Clementine to solve this problem. Firstly, model of K-means clustering analyze the initial data to delete the redundant data. It can avoid scanning the database repeatedly and producing a large number of false rules. Secondly, the paper used clustering results to perform association rule mining. It can obtain valuable information and achieve the service of intelligent recommendation.
基金The work is supported by Natural Science Foundatiion of Chongqing (No .CSTC 2005BB2065)
文摘In data mining from transaction DB, the relationships between the attributes have been focused, but the relationships between the tuples have not been taken into account. In spatial database, there are relationships between the attributes and the tuples, and most of the associations occur between the tuples, such as adjacent, intersection, overlap and other topological relationships. So the tasks of spatial data association rules mining include mining the relationships between attributes of spatial objects, which are called as vertical direction DM, and the relationships between the tuples, which are called as horizontal direction DM. This paper analyzes the storage models of spatial data, uses for reference the technologies of data mining in transaction DB, defines the spatial data association rule, including vertical direction association rule, horizontal direction association rule and two-direction association rule, discusses the measurement of spatial association rule interestingness, and puts forward the work flows of spatial association rule data mining. During two-direction spatial association rules mining, an algorithm is proposed to get non-spatial itemsets. By virtue of spatial analysis, the spatial relations were transferred into non-spatial associations and the non-spatial itemsets were gotten. Based on the non-spatial itemsets, the Apriori algorithm or other algorithms could be used to get the frequent itemsets and then the spatial association rules come into being. Using spatial DB, the spatial association rules were gotten to validate the algorithm, and the test results show that this algorithm is efficient and can mine the interesting spatial rules.