期刊文献+
共找到8,607篇文章
< 1 2 250 >
每页显示 20 50 100
Discovering hidden patterns:Association rules for cardiovascular diseases in type 2 diabetes mellitus
1
作者 Pradeep Kumar Dabla Kamal Upreti +2 位作者 Dharmsheel Shrivastav Vimal Mehta Divakar Singh 《World Journal of Methodology》 2024年第2期97-106,共10页
BACKGROUND It is increasingly common to find patients affected by a combination of type 2 diabetes mellitus(T2DM)and coronary artery disease(CAD),and studies are able to correlate their relationships with available bi... BACKGROUND It is increasingly common to find patients affected by a combination of type 2 diabetes mellitus(T2DM)and coronary artery disease(CAD),and studies are able to correlate their relationships with available biological and clinical evidence.The aim of the current study was to apply association rule mining(ARM)to discover whether there are consistent patterns of clinical features relevant to these diseases.ARM leverages clinical and laboratory data to the meaningful patterns for diabetic CAD by harnessing the power help of data-driven algorithms to optimise the decision-making in patient care.AIM To reinforce the evidence of the T2DM-CAD interplay and demonstrate the ability of ARM to provide new insights into multivariate pattern discovery.METHODS This cross-sectional study was conducted at the Department of Biochemistry in a specialized tertiary care centre in Delhi,involving a total of 300 consented subjects categorized into three groups:CAD with diabetes,CAD without diabetes,and healthy controls,with 100 subjects in each group.The participants were enrolled from the Cardiology IPD&OPD for the sample collection.The study employed ARM technique to extract the meaningful patterns and relationships from the clinical data with its original value.RESULTS The clinical dataset comprised 35 attributes from enrolled subjects.The analysis produced rules with a maximum branching factor of 4 and a rule length of 5,necessitating a 1%probability increase for enhancement.Prominent patterns emerged,highlighting strong links between health indicators and diabetes likelihood,particularly elevated HbA1C and random blood sugar levels.The ARM technique identified individuals with a random blood sugar level>175 and HbA1C>6.6 are likely in the“CAD-with-diabetes”group,offering valuable insights into health indicators and influencing factors on disease outcomes.CONCLUSION The application of this method holds promise for healthcare practitioners to offer valuable insights for enhancing patient treatment targeting specific subtypes of CAD with diabetes.Implying artificial intelligence techniques with medical data,we have shown the potential for personalized healthcare and the development of user-friendly applications aimed at improving cardiovascular health outcomes for this high-risk population to optimise the decision-making in patient care. 展开更多
关键词 Coronary artery disease Type 2 diabetes mellitus Coronary angiography association rule mining artificial intelligence
下载PDF
Application Comparison of Association Rules and C4.5 Rules in Land Evaluation 被引量:3
2
作者 李亭 杨敬锋 陈志民 《Agricultural Science & Technology》 CAS 2010年第4期144-147,共4页
Association rules and C4.5 rules can overcome the shortage of the traditional land evaluation methods and improve the intelligibility and efficiency of the land evaluation knowledge.In order to compare these two kinds... Association rules and C4.5 rules can overcome the shortage of the traditional land evaluation methods and improve the intelligibility and efficiency of the land evaluation knowledge.In order to compare these two kinds of classification rules in the application,two fuzzy classifiers were established by combining with fuzzy decision algorithm especially based on Second General Soil Survey of Guangdong Province.The results of experiments demonstrated that the fuzzy classifier based on association rules obtain a higher accuracy rate,but with more complex calculation process and more computational overhead;the fuzzy classifier based on C4.5 rules obtain a slightly lower accuracy,but with fast computation and simpler calculation. 展开更多
关键词 Land evaluation association rules C4.5 Algorithm Fuzzy decision
下载PDF
THAPE: A Tunable Hybrid Associative Predictive Engine Approach for Enhancing Rule Interpretability in Association Rule Learning for the Retail Sector
3
作者 Monerah Alawadh Ahmed Barnawi 《Computers, Materials & Continua》 SCIE EI 2024年第6期4995-5015,共21页
Association rule learning(ARL)is a widely used technique for discovering relationships within datasets.However,it often generates excessive irrelevant or ambiguous rules.Therefore,post-processing is crucial not only f... Association rule learning(ARL)is a widely used technique for discovering relationships within datasets.However,it often generates excessive irrelevant or ambiguous rules.Therefore,post-processing is crucial not only for removing irrelevant or redundant rules but also for uncovering hidden associations that impact other factors.Recently,several post-processing methods have been proposed,each with its own strengths and weaknesses.In this paper,we propose THAPE(Tunable Hybrid Associative Predictive Engine),which combines descriptive and predictive techniques.By leveraging both techniques,our aim is to enhance the quality of analyzing generated rules.This includes removing irrelevant or redundant rules,uncovering interesting and useful rules,exploring hidden association rules that may affect other factors,and providing backtracking ability for a given product.The proposed approach offers a tailored method that suits specific goals for retailers,enabling them to gain a better understanding of customer behavior based on factual transactions in the target market.We applied THAPE to a real dataset as a case study in this paper to demonstrate its effectiveness.Through this application,we successfully mined a concise set of highly interesting and useful association rules.Out of the 11,265 rules generated,we identified 125 rules that are particularly relevant to the business context.These identified rules significantly improve the interpretability and usefulness of association rules for decision-making purposes. 展开更多
关键词 association rule learning POST-PROCESSING PREDICTIVE machine learning rule interpretability
下载PDF
Comparative Analysis of the Factors Influencing Metro Passenger Arrival Volumes in Wuhan, China, and Lagos, Nigeria: An Application of Association Rule Mining and Neural Network Models
4
作者 Bello Muhammad Lawan Jabir Abubakar Shuyang Zhang 《Journal of Transportation Technologies》 2024年第4期607-653,共47页
This study explores the factors influencing metro passengers’ arrival volume in Wuhan, China, and Lagos, Nigeria, by examining weather, time of day, waiting time, travel behavior, arrival patterns, and metro satisfac... This study explores the factors influencing metro passengers’ arrival volume in Wuhan, China, and Lagos, Nigeria, by examining weather, time of day, waiting time, travel behavior, arrival patterns, and metro satisfaction. It addresses a significant research gap in understanding metro passengers’ dynamics across cultural and geographical contexts. It employs questionnaires, field observations, and advanced data analysis techniques like association rule mining and neural network modeling. Key findings include a correlation between rainy weather, shorter waiting times, and higher arrival volumes. Neural network models showed high predictive accuracy, with waiting time, metro satisfaction, and weather being significant factors in Lagos Light Rail Blue Line Metro. In contrast, arrival patterns, weather, and time of day were more influential in Wuhan Metro Line 5. Results suggest that improving metro satisfaction and reducing waiting times could increase arrival volumes in Lagos Metro while adjusting schedules for weather and peak times could optimize flow in Wuhan Metro. These insights are valuable for transportation planning, passenger arrival volume management, and enhancing user experiences, potentially benefiting urban transportation sustainability and development goals. 展开更多
关键词 Metro Passenger arrival volume Influencing Factor Analysis Wuhan and Lagos Metro Neural Network Modeling association Rule Mining Technique
下载PDF
Research on Algorithm for Mining Negative Association Rules Based on Frequent Pattern Tree
5
作者 ZHU Yu-quan YANG He-biao SONG Yu-qing XIE Cong-hua 《Wuhan University Journal of Natural Sciences》 EI CAS 2006年第1期37-41,共5页
Typical association rules consider only items enumerated in transactions. Such rules are referred to as positive association rules. Negative association rules also consider the same items, but in addition consider neg... Typical association rules consider only items enumerated in transactions. Such rules are referred to as positive association rules. Negative association rules also consider the same items, but in addition consider negated items (i. e. absent from transactions). Negative association rules are useful in market-basket analysis to identify products that conflict with each other or products that complement each other. They are also very convenient for associative classifiers, classifiers that build their classification model based on association rules. Indeed, mining for such rules necessitates the examination of an exponentially large search space. Despite their usefulness, very few algorithms to mine them have been proposed to date. In this paper, an algorithm based on FP tree is presented to discover negative association rules. 展开更多
关键词 data mining FP-TREE Negative association rules
下载PDF
Mining of the quantitative association rules with standard SQL queries and its evaluation
6
作者 孙海洪 唐菁 +1 位作者 蒋洪 杨炳儒 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2004年第1期98-104,共7页
A new algorithm for mining quantitative association rules with standard SQL is presented. The association rules are evaluated with the sufficiency gene LS of subjectivity Bayes reasoning. This algorithm is proved to b... A new algorithm for mining quantitative association rules with standard SQL is presented. The association rules are evaluated with the sufficiency gene LS of subjectivity Bayes reasoning. This algorithm is proved to be quick and effective with its application in Lujiang insects and pests database. 展开更多
关键词 quantitative association rules SQL language EVALUATION
下载PDF
Hiding Sensitive XML Association Rules With Supervised Learning Technique
7
作者 Khalid Iqbal Dr. Sohail Asghar Dr. Abdulrehman Mirza 《Intelligent Information Management》 2011年第6期219-229,共11页
In the privacy preservation of association rules, sensitivity analysis should be reported after the quantification of items in terms of their occurrence. The traditional methodologies, used for preserving confidential... In the privacy preservation of association rules, sensitivity analysis should be reported after the quantification of items in terms of their occurrence. The traditional methodologies, used for preserving confidentiality of association rules, are based on the assumptions while safeguarding susceptible information rather than recognition of insightful items. Therefore, it is time to go one step ahead in order to remove such assumptions in the protection of responsive information especially in XML association rule mining. Thus, we focus on this central and highly researched area in terms of generating XML association rule mining without arguing on the disclosure risks involvement in such mining process. Hence, we described the identification of susceptible items in order to hide the confidential information through a supervised learning technique. These susceptible items show the high dependency on other items that are measured in terms of statistical significance with Bayesian Network. Thus, we proposed two methodologies based on items probabilistic occurrence and mode of items. Additionally, all this information is modeled and named PPDM (Privacy Preservation in Data Mining) model for XARs. Furthermore, the PPDM model is helpful for sharing markets information among competitors with a lower chance of generating monopoly. Finally, PPDM model introduces great accuracy in computing sensitivity of items and opens new dimensions to the academia for the standardization of such NP-hard problems. 展开更多
关键词 XML Document association rules BAYESIAN Network PPDM Model NP-HarD K2 Algorithm
下载PDF
A New Parallel Algorithm for Mining Association Rules
8
作者 丁艳辉 王洪国 +1 位作者 高明 谷建军 《Journal of Donghua University(English Edition)》 EI CAS 2006年第6期76-79,共4页
Mining association rules from large database is very costly. We develop a parallel algorithm for this task on shared-memory multiprocessor (SMP). Most proposed parallel algorithms for association rules mining have to ... Mining association rules from large database is very costly. We develop a parallel algorithm for this task on shared-memory multiprocessor (SMP). Most proposed parallel algorithms for association rules mining have to scan the database at least two times. In this article, a parallel algorithm Scan Once (SO) has been proposed for SMP, which only scans the database once. And this algorithm is fundamentally different from the known parallel algorithm Count Distribution (CD). It adopts bit matrix to store the database information and gets the support of the frequent itemsets by adopting Vector-And-Operation, which greatly improve the efficiency of generating all frequent itemsets. Empirical evaluation shows that the algorithm outperforms the known one CD algorithm. 展开更多
关键词 parallel mining SMP association rules.
下载PDF
DARM: Decremental Association Rules Mining
9
作者 Mohamed Taha Tarek F. Gharib Hamed Nassar 《Journal of Intelligent Learning Systems and Applications》 2011年第3期181-189,共9页
Frequent item sets mining plays an important role in association rules mining. A variety of algorithms for finding frequent item sets in very large transaction databases have been developed. Although many techniques w... Frequent item sets mining plays an important role in association rules mining. A variety of algorithms for finding frequent item sets in very large transaction databases have been developed. Although many techniques were proposed for maintenance of the discovered rules when new transactions are added, little work is done for maintaining the discovered rules when some transactions are deleted from the database. Updates are fundamental aspect of data management. In this paper, a decremental association rules mining algorithm is present for updating the discovered association rules when some transactions are removed from the original data set. Extensive experiments were conducted to evaluate the performance of the proposed algorithm. The results show that the proposed algorithm is efficient and outperforms other well-known algorithms. 展开更多
关键词 Decremental MINING association rules Maintenance Updating association rules
下载PDF
Ethics Lines and Machine Learning: A Design and Simulation of an Association Rules Algorithm for Exploiting the Data
10
作者 Patrici Calvo Rebeca Egea-Moreno 《Journal of Computer and Communications》 2021年第12期17-37,共21页
Data mining techniques offer great opportunities for developing ethics lines whose main aim is to ensure improvements and compliance with the values, conduct and commitments making up the code of ethics. The aim of th... Data mining techniques offer great opportunities for developing ethics lines whose main aim is to ensure improvements and compliance with the values, conduct and commitments making up the code of ethics. The aim of this study is to suggest a process for exploiting the data generated by the data generated and collected from an ethics line by extracting rules of association and applying the Apriori algorithm. This makes it possible to identify anomalies and behaviour patterns requiring action to review, correct, promote or expand them, as appropriate. 展开更多
关键词 Data Mining Ethics Lines association rules Apriori Algorithm COMPANY
下载PDF
Compatibility Rules of Neonatal Parenteral Nutrition Prescriptions Based on Association Rules and Hierarchical Cluster Analysis
11
作者 Xinhong ZHAO Chao SUN +3 位作者 Yanwu ZHAO Ying JIN Ying WANG Zhenhua LIU 《Medicinal Plant》 CAS 2022年第1期39-43,51,共6页
[Objectives]To explore the compatibility rules of neonatal parenteral nutrition(PN)prescriptions based on association rules and hierarchical cluster analysis,thereby providing a reference for standardizing neonatal pa... [Objectives]To explore the compatibility rules of neonatal parenteral nutrition(PN)prescriptions based on association rules and hierarchical cluster analysis,thereby providing a reference for standardizing neonatal parenteral nutrition supportive therapy.[Methods]The data about neonatal PN formulations prepared by the Pharmacy Intravenous Admixture Services(PIVAS)of the Affiliated Hospital of Chengde Medical University from July 2015 to June 2021 were collected.The general information of the prescriptions and the frequency of drug use were analyzed with Excel 2019;the boxplot of drug dosing was drawn using GraphPad 8.0 software;and SPSS Modeler 18.0 and SPSS Statistics 26.0 were used to perform association rules and hierarchical cluster analysis.[Results]A total of 11488 PN prescriptions were collected from 1421 newborns,involving 18 kinds of drugs,which were divided into 11 types of nutrients.Association rules analysis yielded 84 nutrient substance combinations.The combination of fat emulsion-water-soluble vitamins-fat-soluble vitamins-glucose-amino acids had the highest confidence(99.95%).The hierarchical cluster analysis divided nutrients into 5 types.[Conclusions]The prescriptions of PN for newborns were composed of five types of nutrients:amino acids,fat emulsion,glucose,water-soluble vitamins,and fat-soluble vitamins.According to the lack of electrolytes and trace elements,appropriate drugs can be chosen to meet nutritional demands.This study provides reference basis for reasonable selection of drugs for neonatal PN prescriptions and further standardization of PN supportive therapy in newborns. 展开更多
关键词 Neonatal parenteral nutrition prescription Pharmacy Intravenous Admixture Services association rules Hierarchical cluster analysis
下载PDF
Research on spatial association rules mining in two-direction
12
作者 XUE Li-xia WANG Zuo-cheng 《重庆邮电大学学报(自然科学版)》 2007年第3期314-317,共4页
In data mining from transaction DB, the relationships between the attributes have been focused, but the relationships between the tuples have not been taken into account. In spatial database, there are relationships b... In data mining from transaction DB, the relationships between the attributes have been focused, but the relationships between the tuples have not been taken into account. In spatial database, there are relationships between the attributes and the tuples, and most of the associations occur between the tuples, such as adjacent, intersection, overlap and other topological relationships. So the tasks of spatial data association rules mining include mining the relationships between attributes of spatial objects, which are called as vertical direction DM, and the relationships between the tuples, which are called as horizontal direction DM. This paper analyzes the storage models of spatial data, uses for reference the technologies of data mining in transaction DB, defines the spatial data association rule, including vertical direction association rule, horizontal direction association rule and two-direction association rule, discusses the measurement of spatial association rule interestingness, and puts forward the work flows of spatial association rule data mining. During two-direction spatial association rules mining, an algorithm is proposed to get non-spatial itemsets. By virtue of spatial analysis, the spatial relations were transferred into non-spatial associations and the non-spatial itemsets were gotten. Based on the non-spatial itemsets, the Apriori algorithm or other algorithms could be used to get the frequent itemsets and then the spatial association rules come into being. Using spatial DB, the spatial association rules were gotten to validate the algorithm, and the test results show that this algorithm is efficient and can mine the interesting spatial rules. 展开更多
关键词 数据挖掘 空间数据 联合规则 垂直方向 水平方向
下载PDF
Study on association rules mining based on semantic relativity 被引量:2
13
作者 张磊 夏士雄 +1 位作者 周勇 夏战国 《Journal of Southeast University(English Edition)》 EI CAS 2008年第3期358-360,共3页
An association rules mining method based on semantic relativity is proposed to solve the problem that there are more candidate item sets and higher time complexity in traditional association rules mining.Semantic rela... An association rules mining method based on semantic relativity is proposed to solve the problem that there are more candidate item sets and higher time complexity in traditional association rules mining.Semantic relativity of ontology concepts is used to describe complicated relationships of domains in the method.Candidate item sets with less semantic relativity are filtered to reduce the number of candidate item sets in association rules mining.An ontology hierarchy relationship is regarded as a directed acyclic graph rather than a hierarchy tree in the semantic relativity computation.Not only direct hierarchy relationships,but also non-direct hierarchy relationships and other typical semantic relationships are taken into account.Experimental results show that the proposed method can reduce the number of candidate item sets effectively and improve the efficiency of association rules mining. 展开更多
关键词 ONTOLOGY association rules mining semantic relativity
下载PDF
The Application of Weighted Association Rules in Host-Based Intrusion Detection System 被引量:1
14
作者 曹元大 薛静锋 《Journal of Beijing Institute of Technology》 EI CAS 2002年第4期418-421,共4页
Association rules are useful for determining correlations between items. Applying association rules to intrusion detection system (IDS) can improve the detection rate, but false positive rate is also increased. Weight... Association rules are useful for determining correlations between items. Applying association rules to intrusion detection system (IDS) can improve the detection rate, but false positive rate is also increased. Weighted association rules are used in this paper to mine intrustion models, which can increase the detection rate and decrease the false positive rate by some extent. Based on this, the structure of host-based IDS using weighted association rules is proposed. 展开更多
关键词 network security intrusion detection system association rules WEIGHT
下载PDF
Mining association rule efficiently based on data warehouse 被引量:3
15
作者 陈晓红 赖邦传 罗铤 《Journal of Central South University of Technology》 2003年第4期375-380,共6页
The conventional complete association rule set was replaced by the least association rule set in data warehouse association rule mining process. The least association rule set should comply with two requirements: 1) i... The conventional complete association rule set was replaced by the least association rule set in data warehouse association rule mining process. The least association rule set should comply with two requirements: 1) it should be the minimal and the simplest association rule set; 2) its predictive power should in no way be weaker than that of the complete association rule set so that the precision of the association rule set analysis can be guaranteed. By adopting the least association rule set, the pruning of weak rules can be effectively carried out so as to greatly reduce the number of frequent itemset, and therefore improve the mining efficiency. Finally, based on the classical Apriori algorithm, the upward closure property of weak rules is utilized to develop a corresponding efficient algorithm. 展开更多
关键词 data MINING association RULE MINING COMPLETE association RULE SET least association RULE SET
下载PDF
基于Spark集群的火电机组经济性挖掘
16
作者 文孝强 武智斌 +4 位作者 李志伟 刘长良 归一数 蔚伟 丁宇鸣 《吉林电力》 2024年第3期32-35,51,共5页
以电厂经济性为挖掘目标,把供电煤耗率作为机组的评价指标,通过最大信息系数法对影响机组煤耗率的运行参数进行特征选择。对基于Spark的并行Mini Batch K-means算法对外部约束条件进行工况划分以及数据离散化,采用并行FP-growth算法挖... 以电厂经济性为挖掘目标,把供电煤耗率作为机组的评价指标,通过最大信息系数法对影响机组煤耗率的运行参数进行特征选择。对基于Spark的并行Mini Batch K-means算法对外部约束条件进行工况划分以及数据离散化,采用并行FP-growth算法挖掘出机组全工况的强关联规则,进而得到机组重要参数的运行优化指导方案。以某电厂机组为例,结果表明,该方法能够提高数据挖掘效率并完成电厂参数最优值的确定,根据挖掘结果可以更好地对机组人员进行指导。 展开更多
关键词 火电大数据 SParK 关联规则 数据挖掘
下载PDF
Visualizing Association Rules Using Linked Matrix,Graph, and Detail Views 被引量:3
17
作者 Yoones A. Sekhavat Orland Hoeber 《International Journal of Intelligence Science》 2013年第1期34-49,共16页
Although association rule mining is an important pattern recognition and data analysis technique, extracting and finding significant rules from a large collection has always been challenging. The ability of informatio... Although association rule mining is an important pattern recognition and data analysis technique, extracting and finding significant rules from a large collection has always been challenging. The ability of information visualization to enable users to gain an understanding of high dimensional and large-scale data can play a major role in the exploration, identification, and interpretation of association rules. In this paper, we propose a method that provides multiple views of the association rules, linked together through a filtering mechanism. A visual inspection of the entire association rule set is enabled within a matrix view. Items of interest can be selected, resulting in their corresponding association rules being shown in a graph view. At any time, individual rules can be selected in either view, resulting in their information being shown in the detail view. The fundamental premise in this work is that by providing such a visual and interactive representation of the association rules, users will be able to find important rules quickly and easily, even as the number of rules that must be inspected becomes large. A user evaluation was conducted which validates this premise. 展开更多
关键词 association rules Information VISUALIZATION Scalable VISUALIZATION Knowledge VISUALIZATION Human Computer Interaction User EVALUATIONS
下载PDF
Regression Analysis of the Number of Association Rules 被引量:1
18
作者 Wei-Guo Yi Ming-Yu Lu Zhi Liu 《International Journal of Automation and computing》 EI 2011年第1期78-82,共5页
The typical model, which involves the measures: support, confidence, and interest, is often adapted to mining association rules. In the model, the related parameters are usually chosen by experience; consequently, th... The typical model, which involves the measures: support, confidence, and interest, is often adapted to mining association rules. In the model, the related parameters are usually chosen by experience; consequently, the number of useful rules is hard to estimate. If the number is too large, we cannot effectively extract the meaningful rules. This paper analyzes the meanings of the parameters and designs a variety of equations between the number of rules and the parameters by using regression method. Finally, we experimentally obtain a preferable regression equation. This paper uses multiple correlation coeficients to test the fitting efiects of the equations and uses significance test to verify whether the coeficients of parameters are significantly zero or not. The regression equation that has a larger multiple correlation coeficient will be chosen as the optimally fitted equation. With the selected optimal equation, we can predict the number of rules under the given parameters and further optimize the choice of the three parameters and determine their ranges of values. 展开更多
关键词 association rules regression analysis multiple correlation coeficients INTEREST SUPPORT confidence.
下载PDF
Mining association rules in incomplete information systems 被引量:2
19
作者 罗可 王丽丽 童小娇 《Journal of Central South University of Technology》 EI 2008年第5期733-737,共5页
Based on the rough set theory which is a powerful tool in dealing with vagueness and uncertainty, an algorithm to mine association rules in incomplete information systems was presented and the support and confidence w... Based on the rough set theory which is a powerful tool in dealing with vagueness and uncertainty, an algorithm to mine association rules in incomplete information systems was presented and the support and confidence were redefined. The algorithm can mine the association rules with decision attributes directly without processing missing values. Using the incomplete dataset Mushroom from UCI machine learning repository, the new algorithm was compared with the classical association rules mining algorithm based on Apriori from the number of rules extracted, testing accuracy and execution time. The experiment results show that the new algorithm has advantages of short execution time and high accuracy. 展开更多
关键词 association rules rough sets prediction support prediction confidence incomplete information system
下载PDF
A New Method Based on Association Rules Mining and Geo-filter for Mining Spatial Association Knowledge 被引量:6
20
作者 LIU Yaolin XIE Peng +3 位作者 HE Qingsong ZHAO Xiang WEI Xiaojian TAN Ronghui 《Chinese Geographical Science》 SCIE CSCD 2017年第3期389-401,共13页
Association rule mining methods, as a set of important data mining tools, could be used for mining spatial association rules of spatial data. However, applications of these methods are limited for mining results conta... Association rule mining methods, as a set of important data mining tools, could be used for mining spatial association rules of spatial data. However, applications of these methods are limited for mining results containing large number of redundant rules. In this paper, a new method named Geo-Filtered Association Rules Mining(GFARM) is proposed to effectively eliminate the redundant rules. An application of GFARM is performed as a case study in which association rules are discovered between building land distribution and potential driving factors in Wuhan, China from 1995 to 2015. Ten sets of regular sampling grids with different sizes are used for detecting the influence of multi-scales on GFARM. Results show that the proposed method can filter 50%–70% of redundant rules. GFARM is also successful in discovering spatial association pattern between building land distribution and driving factors. 展开更多
关键词 data mining association rules rules spatial visualization driving factors analysis land use change
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部