挖掘最大频繁项目集是多种数据挖掘应用中的关键问题,之前的很多研究都是采用Apriori类的候选项目集生成-检验方法.然而,候选项目集产生的代价是很高的,尤其是在存在大量强模式和/或长模式的时候.提出了一种快速的基于频繁模式树(FP-tr...挖掘最大频繁项目集是多种数据挖掘应用中的关键问题,之前的很多研究都是采用Apriori类的候选项目集生成-检验方法.然而,候选项目集产生的代价是很高的,尤其是在存在大量强模式和/或长模式的时候.提出了一种快速的基于频繁模式树(FP-tree)的最大频繁项目集挖掘DMFIA(discover maximum frequent itemsets algorithm)及其更新算法UMFIA(update maximum frequent itemsets algorithm).算法UMFIA将充分利用以前的挖掘结果来减少在更新的数据库中发现新的最大频繁项目集的费用.展开更多
有效地进行频繁项挖掘一直以来都是数据挖掘任务中最为重要的组成部分。已有的大部分频繁项挖掘算法在数据项多及支持度低的情况下,算法的效率急剧下降。为了有效地解决此类问题,提出了一种采用双向十字链表结构的频繁项挖掘算法(two-wa...有效地进行频繁项挖掘一直以来都是数据挖掘任务中最为重要的组成部分。已有的大部分频繁项挖掘算法在数据项多及支持度低的情况下,算法的效率急剧下降。为了有效地解决此类问题,提出了一种采用双向十字链表结构的频繁项挖掘算法(two-way crossed list for frequent itemsets mining,TCLFI)。极大地降低了搜索空间,加快了频繁项的筛选过程,减少了所需保存的数据项个数,从而降低了时间复杂度,提高了频繁项的挖掘效率。实验通过真实数据集和合成数据集验证了算法的有效性和扩展性。展开更多
文摘挖掘最大频繁项目集是多种数据挖掘应用中的关键问题,之前的很多研究都是采用Apriori类的候选项目集生成-检验方法.然而,候选项目集产生的代价是很高的,尤其是在存在大量强模式和/或长模式的时候.提出了一种快速的基于频繁模式树(FP-tree)的最大频繁项目集挖掘DMFIA(discover maximum frequent itemsets algorithm)及其更新算法UMFIA(update maximum frequent itemsets algorithm).算法UMFIA将充分利用以前的挖掘结果来减少在更新的数据库中发现新的最大频繁项目集的费用.
文摘有效地进行频繁项挖掘一直以来都是数据挖掘任务中最为重要的组成部分。已有的大部分频繁项挖掘算法在数据项多及支持度低的情况下,算法的效率急剧下降。为了有效地解决此类问题,提出了一种采用双向十字链表结构的频繁项挖掘算法(two-way crossed list for frequent itemsets mining,TCLFI)。极大地降低了搜索空间,加快了频繁项的筛选过程,减少了所需保存的数据项个数,从而降低了时间复杂度,提高了频繁项的挖掘效率。实验通过真实数据集和合成数据集验证了算法的有效性和扩展性。