For the plane curves Γ,the maximal operator associated to it is defined by Mf(x)=sup|∫f(x-Γ(t))(r^(-1)t)r^(-1)dt| where is a Schwartz function.For a certain class of curves in R^2,M is shown to bounded on (H(R^2)...For the plane curves Γ,the maximal operator associated to it is defined by Mf(x)=sup|∫f(x-Γ(t))(r^(-1)t)r^(-1)dt| where is a Schwartz function.For a certain class of curves in R^2,M is shown to bounded on (H(R^2),Weak L^1(R^2).This extends the theorem of Stein & Wainger and the theo- rem of Weinberg.展开更多
文摘For the plane curves Γ,the maximal operator associated to it is defined by Mf(x)=sup|∫f(x-Γ(t))(r^(-1)t)r^(-1)dt| where is a Schwartz function.For a certain class of curves in R^2,M is shown to bounded on (H(R^2),Weak L^1(R^2).This extends the theorem of Stein & Wainger and the theo- rem of Weinberg.