The characteristics of asteroids are vital parameters for planning asteroid exploration missions.These characteristics have been explored in close range for some typical asteroids,and are summarized in the article.Thi...The characteristics of asteroids are vital parameters for planning asteroid exploration missions.These characteristics have been explored in close range for some typical asteroids,and are summarized in the article.This allows estimates of the characteristics of asteroid 2016HO_(3),the target of the first Chinese asteroid exploration mission,Tianwen 2.We obtain 80 characteristic parameters in 9 categories and analyze their impacts on the mission.By comparing three close-range exploration modes,we provide advantages and disadvantages of each,and propose suitable methods for the exploration of 2016HO_(3).Owing to the weak gravity and small size of 2016HO_(3),a combination of multiple hovering positions and active orbiting is recommended for scientific exploration.展开更多
The shapes and rotation states(periods and pole orientations)of main-belt asteroids are important for understanding their formation and evolution.In order to obtain sufficient photometric data covering different appar...The shapes and rotation states(periods and pole orientations)of main-belt asteroids are important for understanding their formation and evolution.In order to obtain sufficient photometric data covering different apparitions for asteroid(81)Terpsichore,ground-based photometric observations in 2020 and 2021 were carried out.By combining published and newly obtained photometric data,we calculated the shape and spin parameters for(81)Terpsichore using the convex inversion method.With this method,we have derived a best fitted pole orientation—(22.2±_(3.1)^(3.3°),17.5±_(5.5)^(10.8°))with a spin period of 10.94±_(0.01)^(0.01)h.Based on the derived convex shape of(81)Terpsichore,we have fitted the H,G+1,G_(2)phase function using the calibrated TESS data and Gaia data after accounting for the lightcurve amplitude correction.As a result,we have derived its absolute magnitude H=8.68±_(0.19)^(0.22)mag with corresponding phase function parameters G_(1)=0.82±_(0.10)^(0.09)and G_(2)=0.02±_(0.02)^(0.03).展开更多
As the second of Earth's Trojan asteroids, 2020 XL_(5) is worthy of rendezvous and even sample return missions in many aspects. In this paper, a rendezvous mission to Earth's second Trojan asteroid 2020 XL_(5)...As the second of Earth's Trojan asteroids, 2020 XL_(5) is worthy of rendezvous and even sample return missions in many aspects. In this paper, a rendezvous mission to Earth's second Trojan asteroid 2020 XL_(5) is proposed.However, due to its high inclination and large eccentricity, direct impulsive transfer requires large amounts of fuel consumption. To address this challenge, we explore the benefits of electric propulsion and multi-gravity assist techniques for interplanetary missions. These two techniques are integrated in this mission design. The design of a low-thrust gravity-assist(LTGA) trajectory in multi-body dynamics is thoroughly investigated,which is a complex process. A comprehensive framework including three steps is presented here for optimization of LTGA trajectories in multi-body dynamics. The rendezvous mission to 2020 XL_(5) is designed with this three-step approach. The most effective transfer sequence among the outcomes involves Earth–Venus–Earth–Venus-2020 XL_(5). Numerical results indicate that the combination of electric propulsion and multi-gravity assists can greatly reduce the fuel consumption, with fuel consumption of 9.03%, making it a highly favorable choice for this rendezvous mission.展开更多
Determining asteroid properties provides valuable physical insights but inverting them from photometric lightcurves remains computationally intensive.This paper presents a new approach that combines a simplified Celli...Determining asteroid properties provides valuable physical insights but inverting them from photometric lightcurves remains computationally intensive.This paper presents a new approach that combines a simplified Cellinoid shape model with the Parallel Differential Evolution(PDE)algorithm to accelerate inversion.The PDE algorithm is more efficient than the Differential Evolution algorithm,achieving an extraordinary speedup of 37.983 with 64 workers on multicore CPUs.The PDE algorithm accurately derives period and pole values from simulated data.The analysis of real asteroid lightcurves validates the method’s reliability:in comparison with results published elsewhere,the PDE algorithm accurately recovers the rotational periods and,given adequate viewing geometries,closely matches the pole orientations.The PDE approach converges to solutions within 20,000 iterations and under one hour,demonstrating its potential for large-scale data analysis.This work provides a promising new tool for unveiling asteroid physical properties by overcoming key computational bottlenecks.展开更多
In the 6th edition of the Chinese Space Trajectory Design Competition held in 2014, a near-Earth asteroid sample-return trajectory design problem was released, in which the motion of the spacecraft is modeled in multi...In the 6th edition of the Chinese Space Trajectory Design Competition held in 2014, a near-Earth asteroid sample-return trajectory design problem was released, in which the motion of the spacecraft is modeled in multi-body dynamics, considering the gravitational forces of the Sun, Earth, and Moon. It is proposed that an electric-propulsion spacecraft initially parking in a circular 200-kin-altitude low Earth orbit is expected to rendezvous with an asteroid and carry as much sample as possible back to the Earth in a 10-year time frame. The team from the Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences has reported a solution with an asteroid sample mass of 328 tons, which is ranked first in the competition. In this article, we will present our design and optimization methods, primarily including overall analysis, target selection, escape from and capture by the Earth-Moon system, and optimization of impulsive and low-thrust trajectories that are modeled in multi-body dynamics. The orbital resonance concept and lunar gravity assists are considered key techniques employed for trajectory design. The reported solution, preliminarily revealing the feasibility of returning a hundreds-of-tons asteroid or asteroid sample, envisions future space missions relating to near-Earth asteroid exploration.展开更多
Driven by curiosity about possible flight options for the Chang'e-2 spacecraft after it remains at the Sun-Earth L2 point, effective approaches were developed for designing preliminary fuel-optimal near-Earth asteroi...Driven by curiosity about possible flight options for the Chang'e-2 spacecraft after it remains at the Sun-Earth L2 point, effective approaches were developed for designing preliminary fuel-optimal near-Earth asteroid flyby trajectories. The approaches include the use of modified unstable manifolds, grid search of the manifolds' parameters, and a two-impulse maneuver for orbital phase matching and z-axis bias change, and are demonstrated to be effective in asteroid target screening and trajectory optimization. Asteroid flybys are expected to be within a distance of 2 × 10^7 km from the Earth owing to the constrained Earth-spacecraft communication range. In this case, the spacecraft's orbital motion is significantly affected by the gravities of both the Sun and the Earth, and therefore, the concept of the "he- liocentric oscillating-Kepler orbit" is proposed, because the classical orbital elements of the flyby trajectories referenced in the heliocentric inertial frame oscillate significantly with respect to time. The analysis and results presented in this study show that, among the asteroids whose orbits are the most accurately predicted, "Toutatis", "2005 NZ6", or "2010 CL19" might be encountered by Chang'e-2 in late 2012 or 2013 with total impulses less than 100 rn/s.展开更多
A method for classifying orbits near asteroids under a polyhedral gravitational field is presented, and may serve as a valuable reference for spacecraft orbit design for asteroid exploration. The orbital dynamics near...A method for classifying orbits near asteroids under a polyhedral gravitational field is presented, and may serve as a valuable reference for spacecraft orbit design for asteroid exploration. The orbital dynamics near aster- oids are very complex. According to the variation in orbit characteristics after being affected by gravitational perturbation during the periapsis passage, orbits near an as- teroid can be classified into 9 categories: (1) surrounding- to-surrounding, (2) surrounding-to-surface, (3) surrounding- to-infinity, (4) infinity-to-infinity, (5) infinity-to-surface, (6) infinity-to-surrounding, (7) surface-to-surface, (8) surface- to-surrounding, and (9) surface-to- infinity. Assume that the orbital elements are constant near the periapsis, the gravitation potential is expanded into a harmonic series. Then, the influence of the gravitational perturbation on the orbit is studied analytically. The styles of orbits are dependent on the argument of periapsis, the periapsis radius, and the periapsis velocity. Given the argument of periapsis, the orbital energy before and after perturbation can be derived according to the periapsis radius and the periapsis velocity. Simulations have been performed for orbits in the gravitational field of 216 Kleopatra. The numerical results are well consistent with analytic predictions.展开更多
In asteroid rendezvous missions, the dynamical environment near an asteroid’s surface should be made clear prior to launch of the mission. However, most asteroids have irregular shapes,which lower the efficiency of c...In asteroid rendezvous missions, the dynamical environment near an asteroid’s surface should be made clear prior to launch of the mission. However, most asteroids have irregular shapes,which lower the efficiency of calculating their gravitational field by adopting the traditional polyhedral method. In this work, we propose a method to partition the space near an asteroid adaptively along three spherical coordinates and use Chebyshev polynomial interpolation to represent the gravitational acceleration in each cell. Moreover, we compare four different interpolation schemes to obtain the best precision with identical initial parameters. An error-adaptive octree division is combined to improve the interpolation precision near the surface. As an example, we take the typical irregularly-shaped nearEarth asteroid 4179 Toutatis to demonstrate the advantage of this method; as a result, we show that the efficiency can be increased by hundreds to thousands of times with our method. Our results indicate that this method can be applicable to other irregularly-shaped asteroids and can greatly improve the evaluation efficiency.展开更多
The paper describes observations of fast-moving near-Earth asteroids(NEAs) made with the small ground-based telescopes of National Time Service Center of Chinese Academy of Science(NTSC of CAS) and Research Institute ...The paper describes observations of fast-moving near-Earth asteroids(NEAs) made with the small ground-based telescopes of National Time Service Center of Chinese Academy of Science(NTSC of CAS) and Research Institute "Mykolaiv Astronomical Observatory"(RI MAO) by the rotating-drift-scan CCD(RDS CCD) technique. This technique is used to obtain the point images of both the studied objects and reference stars. The results of ongoing follow-up observations of NEAs are discussed. The residual differences(O-C) between the observed and calculated positions from JPL ephemeris were generally small for these asteroids. The standard deviations of these differences were typically ±(0.2′′-0.3′′) in both coordinates for objects with apparent velocity which substantially exceed FWHM for the given exposure time. The results of comparative statistics for such observations from the MPC database show that this is a good level of precision for NEAs. Moreover, the telescopes with the RDS CCD technique implemented can observe the NEAs that closely approach the Earth and with enough observations can improve the precision of determining their orbital elements and impact predictions.展开更多
The near-Earth asteroid collisions could cause catastrophic disasters to humanity and the Earth,so it is crucial to monitor asteroids.Ground-based synthetic aperture radar(SAR)is an observation technique for high reso...The near-Earth asteroid collisions could cause catastrophic disasters to humanity and the Earth,so it is crucial to monitor asteroids.Ground-based synthetic aperture radar(SAR)is an observation technique for high resolution imaging of asteroids.The ground-based SAR requires a long integration time to achieve a large synthetic aperture,and the echo signal will be seriously affected by temporal-spatial variant troposphere.Traditional spatiotemporal freezing tropospheric models are ineffective.To cope with this,this paper models and analyses the impacts of temporal-spatial variant troposphere on ground-based SAR imaging of asteroids.For the background tropo-sphere,a temporal-spatial variant ray tracing method is proposed to trace the 4D(3D spatial+temporal)refractive index network provided by the numerical weather model,and calculate the error of the background troposphere.For the tropospheric turbulence,the Andrew power spectral model is used in conjunction with multiphase screen theory,and varying errors are obtained by tracking the changing position of the pierce point on the phase screen.Through simulation,the impact of temporal-spatial variant tropospheric errors on image quality is analyzed,and the simulation results show that the X-band echo signal is seriously affected by the troposphere and the echo signal must be compensated.展开更多
文摘The characteristics of asteroids are vital parameters for planning asteroid exploration missions.These characteristics have been explored in close range for some typical asteroids,and are summarized in the article.This allows estimates of the characteristics of asteroid 2016HO_(3),the target of the first Chinese asteroid exploration mission,Tianwen 2.We obtain 80 characteristic parameters in 9 categories and analyze their impacts on the mission.By comparing three close-range exploration modes,we provide advantages and disadvantages of each,and propose suitable methods for the exploration of 2016HO_(3).Owing to the weak gravity and small size of 2016HO_(3),a combination of multiple hovering positions and active orbiting is recommended for scientific exploration.
基金financial support from the Science Research Foundation of Yunnan Education Department of China(grant 2020J0649)the Natural Science Foundation of Yunnan Province(grant 202101AU070010)the financial support from the Hundred Talents Program of Yuxi(grant 2019-003)。
文摘The shapes and rotation states(periods and pole orientations)of main-belt asteroids are important for understanding their formation and evolution.In order to obtain sufficient photometric data covering different apparitions for asteroid(81)Terpsichore,ground-based photometric observations in 2020 and 2021 were carried out.By combining published and newly obtained photometric data,we calculated the shape and spin parameters for(81)Terpsichore using the convex inversion method.With this method,we have derived a best fitted pole orientation—(22.2±_(3.1)^(3.3°),17.5±_(5.5)^(10.8°))with a spin period of 10.94±_(0.01)^(0.01)h.Based on the derived convex shape of(81)Terpsichore,we have fitted the H,G+1,G_(2)phase function using the calibrated TESS data and Gaia data after accounting for the lightcurve amplitude correction.As a result,we have derived its absolute magnitude H=8.68±_(0.19)^(0.22)mag with corresponding phase function parameters G_(1)=0.82±_(0.10)^(0.09)and G_(2)=0.02±_(0.02)^(0.03).
基金supported by Basic Research Project of China(grant No:JCKY2020110C096)the National Key R&D Program of China (grant No:2020YFC2201202)。
文摘As the second of Earth's Trojan asteroids, 2020 XL_(5) is worthy of rendezvous and even sample return missions in many aspects. In this paper, a rendezvous mission to Earth's second Trojan asteroid 2020 XL_(5) is proposed.However, due to its high inclination and large eccentricity, direct impulsive transfer requires large amounts of fuel consumption. To address this challenge, we explore the benefits of electric propulsion and multi-gravity assist techniques for interplanetary missions. These two techniques are integrated in this mission design. The design of a low-thrust gravity-assist(LTGA) trajectory in multi-body dynamics is thoroughly investigated,which is a complex process. A comprehensive framework including three steps is presented here for optimization of LTGA trajectories in multi-body dynamics. The rendezvous mission to 2020 XL_(5) is designed with this three-step approach. The most effective transfer sequence among the outcomes involves Earth–Venus–Earth–Venus-2020 XL_(5). Numerical results indicate that the combination of electric propulsion and multi-gravity assists can greatly reduce the fuel consumption, with fuel consumption of 9.03%, making it a highly favorable choice for this rendezvous mission.
基金supported by the Characteristic innovation project of Guangdong Provincial Department of Education(No.2023KTSCX195)Scientific Computing Research Innovation Team of Guangdong Province(No.2021KCXTD052)+2 种基金Guangdong Key Construction Discipline Research Capacity Enhancement Project(No.2022ZD JS049)Technology Planning Project of Shaoguan(No.230330108034184)Science and Technology Development Fund,Macao SAR(No.0096/2022/A)。
文摘Determining asteroid properties provides valuable physical insights but inverting them from photometric lightcurves remains computationally intensive.This paper presents a new approach that combines a simplified Cellinoid shape model with the Parallel Differential Evolution(PDE)algorithm to accelerate inversion.The PDE algorithm is more efficient than the Differential Evolution algorithm,achieving an extraordinary speedup of 37.983 with 64 workers on multicore CPUs.The PDE algorithm accurately derives period and pole values from simulated data.The analysis of real asteroid lightcurves validates the method’s reliability:in comparison with results published elsewhere,the PDE algorithm accurately recovers the rotational periods and,given adequate viewing geometries,closely matches the pole orientations.The PDE approach converges to solutions within 20,000 iterations and under one hour,demonstrating its potential for large-scale data analysis.This work provides a promising new tool for unveiling asteroid physical properties by overcoming key computational bottlenecks.
基金supported by the National Natural Science Foundation of China(Grant11372311)the grant from the State key Laboratory of Astronautic Dynamics(2014-ADL-DW0201)
文摘In the 6th edition of the Chinese Space Trajectory Design Competition held in 2014, a near-Earth asteroid sample-return trajectory design problem was released, in which the motion of the spacecraft is modeled in multi-body dynamics, considering the gravitational forces of the Sun, Earth, and Moon. It is proposed that an electric-propulsion spacecraft initially parking in a circular 200-kin-altitude low Earth orbit is expected to rendezvous with an asteroid and carry as much sample as possible back to the Earth in a 10-year time frame. The team from the Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences has reported a solution with an asteroid sample mass of 328 tons, which is ranked first in the competition. In this article, we will present our design and optimization methods, primarily including overall analysis, target selection, escape from and capture by the Earth-Moon system, and optimization of impulsive and low-thrust trajectories that are modeled in multi-body dynamics. The orbital resonance concept and lunar gravity assists are considered key techniques employed for trajectory design. The reported solution, preliminarily revealing the feasibility of returning a hundreds-of-tons asteroid or asteroid sample, envisions future space missions relating to near-Earth asteroid exploration.
基金supported by the State Key Laboratory of Astronautic Dynamics(2011ADL-DW0202)
文摘Driven by curiosity about possible flight options for the Chang'e-2 spacecraft after it remains at the Sun-Earth L2 point, effective approaches were developed for designing preliminary fuel-optimal near-Earth asteroid flyby trajectories. The approaches include the use of modified unstable manifolds, grid search of the manifolds' parameters, and a two-impulse maneuver for orbital phase matching and z-axis bias change, and are demonstrated to be effective in asteroid target screening and trajectory optimization. Asteroid flybys are expected to be within a distance of 2 × 10^7 km from the Earth owing to the constrained Earth-spacecraft communication range. In this case, the spacecraft's orbital motion is significantly affected by the gravities of both the Sun and the Earth, and therefore, the concept of the "he- liocentric oscillating-Kepler orbit" is proposed, because the classical orbital elements of the flyby trajectories referenced in the heliocentric inertial frame oscillate significantly with respect to time. The analysis and results presented in this study show that, among the asteroids whose orbits are the most accurately predicted, "Toutatis", "2005 NZ6", or "2010 CL19" might be encountered by Chang'e-2 in late 2012 or 2013 with total impulses less than 100 rn/s.
文摘A method for classifying orbits near asteroids under a polyhedral gravitational field is presented, and may serve as a valuable reference for spacecraft orbit design for asteroid exploration. The orbital dynamics near aster- oids are very complex. According to the variation in orbit characteristics after being affected by gravitational perturbation during the periapsis passage, orbits near an as- teroid can be classified into 9 categories: (1) surrounding- to-surrounding, (2) surrounding-to-surface, (3) surrounding- to-infinity, (4) infinity-to-infinity, (5) infinity-to-surface, (6) infinity-to-surrounding, (7) surface-to-surface, (8) surface- to-surrounding, and (9) surface-to- infinity. Assume that the orbital elements are constant near the periapsis, the gravitation potential is expanded into a harmonic series. Then, the influence of the gravitational perturbation on the orbit is studied analytically. The styles of orbits are dependent on the argument of periapsis, the periapsis radius, and the periapsis velocity. Given the argument of periapsis, the orbital energy before and after perturbation can be derived according to the periapsis radius and the periapsis velocity. Simulations have been performed for orbits in the gravitational field of 216 Kleopatra. The numerical results are well consistent with analytic predictions.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.11473073,11503091,11661161013 and 11633009)Foundation of Minor Planets of the Purple Mountain Observatory
文摘In asteroid rendezvous missions, the dynamical environment near an asteroid’s surface should be made clear prior to launch of the mission. However, most asteroids have irregular shapes,which lower the efficiency of calculating their gravitational field by adopting the traditional polyhedral method. In this work, we propose a method to partition the space near an asteroid adaptively along three spherical coordinates and use Chebyshev polynomial interpolation to represent the gravitational acceleration in each cell. Moreover, we compare four different interpolation schemes to obtain the best precision with identical initial parameters. An error-adaptive octree division is combined to improve the interpolation precision near the surface. As an example, we take the typical irregularly-shaped nearEarth asteroid 4179 Toutatis to demonstrate the advantage of this method; as a result, we show that the efficiency can be increased by hundreds to thousands of times with our method. Our results indicate that this method can be applicable to other irregularly-shaped asteroids and can greatly improve the evaluation efficiency.
基金supported by the National Natural Science Foundation of China(Grant Nos.U1831133 and 12073062)National Astronomical Data Center of China。
文摘The paper describes observations of fast-moving near-Earth asteroids(NEAs) made with the small ground-based telescopes of National Time Service Center of Chinese Academy of Science(NTSC of CAS) and Research Institute "Mykolaiv Astronomical Observatory"(RI MAO) by the rotating-drift-scan CCD(RDS CCD) technique. This technique is used to obtain the point images of both the studied objects and reference stars. The results of ongoing follow-up observations of NEAs are discussed. The residual differences(O-C) between the observed and calculated positions from JPL ephemeris were generally small for these asteroids. The standard deviations of these differences were typically ±(0.2′′-0.3′′) in both coordinates for objects with apparent velocity which substantially exceed FWHM for the given exposure time. The results of comparative statistics for such observations from the MPC database show that this is a good level of precision for NEAs. Moreover, the telescopes with the RDS CCD technique implemented can observe the NEAs that closely approach the Earth and with enough observations can improve the precision of determining their orbital elements and impact predictions.
基金supported in part by the National Natural Science Foundation of China(Nos.62101039,62201051)in part by the Shandong Excellent Young Scientists Fund Program(Overseas)in part by China Postdoctoral Science Foundation(No.2022M720443).
文摘The near-Earth asteroid collisions could cause catastrophic disasters to humanity and the Earth,so it is crucial to monitor asteroids.Ground-based synthetic aperture radar(SAR)is an observation technique for high resolution imaging of asteroids.The ground-based SAR requires a long integration time to achieve a large synthetic aperture,and the echo signal will be seriously affected by temporal-spatial variant troposphere.Traditional spatiotemporal freezing tropospheric models are ineffective.To cope with this,this paper models and analyses the impacts of temporal-spatial variant troposphere on ground-based SAR imaging of asteroids.For the background tropo-sphere,a temporal-spatial variant ray tracing method is proposed to trace the 4D(3D spatial+temporal)refractive index network provided by the numerical weather model,and calculate the error of the background troposphere.For the tropospheric turbulence,the Andrew power spectral model is used in conjunction with multiphase screen theory,and varying errors are obtained by tracking the changing position of the pierce point on the phase screen.Through simulation,the impact of temporal-spatial variant tropospheric errors on image quality is analyzed,and the simulation results show that the X-band echo signal is seriously affected by the troposphere and the echo signal must be compensated.