The sharing of telecommunications infrastructure and power supply equipment is currently an applicable and very common model for grouping signal transmission and reception equipment and their power supply on the same ...The sharing of telecommunications infrastructure and power supply equipment is currently an applicable and very common model for grouping signal transmission and reception equipment and their power supply on the same site to ensure coverage of fixed, mobile, Internet and radio and television broadcasting networks. This study consists of producing an inventory of telecommunications and energy infrastructure sharing, focusing on the one hand on analyzing the impacts of active and passive sharing of telecommunications infrastructure from a technical point of view, particularly in terms of legal framework, deployment, coverage and exposure to electromagnetic radiation, and on the other hand on identifying the effects of infrastructure sharing from a socio-economic point of view in a multi-operator mobile telephony environment, by indicating the economic value of the revenue generated as a result of infrastructure sharing. Finally, the results will contribute to identify strategies for ensuring maximum deployment and coverage of the country, and for developing the information and communication technologies (ICT) sector in order to contribute to the digital transformation by digitising services using mobile telephony and the Internet in Burundi.展开更多
Polypropylene(PP)fiber-reinforced cement-based tailings backfill(FRCTB)is a green compound material with superior crack resistance and has good prospects for application in underground mining.However,FRCTB exhibits su...Polypropylene(PP)fiber-reinforced cement-based tailings backfill(FRCTB)is a green compound material with superior crack resistance and has good prospects for application in underground mining.However,FRCTB exhibits susceptibility to dynamic events,such as impact ground pressure and blast vibrations.This paper investigates the energy and crack distribution behavior of FRCTB under dynamic impact,considering the height/diameter(H/D)effect.Split Hopkinson pressure bar,industrial computed tomography scan,and scanning electron microscopy(SEM)experiments were carried out on six types of FRCTB.Laboratory outcomes confirmed fiber aggregation at the bottom of specimens.When H/D was less than 0.8,the proportion of PP fibers distributed along theθangle direction of80°-90°increased.For the total energy,all samples presented similar energy absorption,reflectance,and transmittance.However,a rise in H/D may cause a rise in the energy absorption rate of FRCTB during the peak phase.A positive correlation existed between the average strain rate and absorbed energy per unit volume.The increase in H/D resulted in a decreased crack volume fraction of FRCTB.When the H/D was greater than or equal to 0.7,the maximum crack volume fraction of FRCTB was observed close to the incidence plane.Radial cracks were present only in the FRCTB with an H/D ratio of 0.5.Samples with H/D ratios of 0.5 and 0.6 showed similar distributions of weakly and heavily damaged areas.PP fibers can limit the emergence and expansion of cracks by influencing their path.SEM observations revealed considerable differences in the bonding strengths between fibers and the FRCTB.Fibers that adhered particularly well to the substrate were attracted together with the hydration products adhering to surfaces.These results show that FRCTB is promising as a sustainable and green backfill for determining the design properties of mining with backfill.展开更多
Having experienced over 30 years of rapid growth,China’s economic development is entering a new normal featured by an ever optimizing economic structure shifting from high-speed to medium-high speed growth,and from f...Having experienced over 30 years of rapid growth,China’s economic development is entering a new normal featured by an ever optimizing economic structure shifting from high-speed to medium-high speed growth,and from factor-driven to innovation-driven pattern.In adapting展开更多
The deformation behavior and crashworthiness of functionally-graded foam-filled tubes(FGFTs)under drop-weight impact loading were investigated.Closed cell aluminum,A356 alloy and zinc foams fabricated by the liquid st...The deformation behavior and crashworthiness of functionally-graded foam-filled tubes(FGFTs)under drop-weight impact loading were investigated.Closed cell aluminum,A356 alloy and zinc foams fabricated by the liquid state processing were used as axial grading fillers for the manufacture of single-layer and multilayer structures with different configurations.The results indicate that the deformation of multilayer foam filled tubes initiates from the low-strength components,and then propagates in the high-strength components through the gradual increment of stress.The use of more A356 alloy and aluminum foam layers provides greater specific energy absorption(SEA)for the graded structures,whereas the high-strength zinc foam has no positive effect on the crash performance.The progressive collapse of graded structures consisting of the aluminum and A356 alloy foams occurs in a symmetric mode under quasi-static and drop-weight impact conditions.However,the zinc foam causes a combination of symmetric and extension modes as well as greater localized deformation under dynamic loading and greater local rupture in quasi-static loading condition.The Al−A356 foam-filled tubes with a combination of the highest SEA(10 J/g)and the lowest initial peak stress(σmax of 10.2 MPa)are considered as the best lightweight crashworthy structures.展开更多
Using an improved FVCOM numerical model, combined with the momentum-sinking scheme based on the structural characteristics of specific turbines, this study analyzed the temporal and spatial distributions of tidal ener...Using an improved FVCOM numerical model, combined with the momentum-sinking scheme based on the structural characteristics of specific turbines, this study analyzed the temporal and spatial distributions of tidal energy resources before and after the deployment of tidal turbines near Pingtan Island, China. Considering factors such as the distribution of tidal stream energy, bathymetry, topography, and the design parameters of the turbines, an appropriate location for a demonstration tidal turbine was selected and the corresponding energy resource was evaluated. Several sites with strong tidal streams were considered: south of the northern cape, east of the southem cape, and the southern end of Haitan Bay. The former was thought most suitable for the deployment of a tidal energy turbine, with projected power generation for approximately 470 h per month. The average power of this demonstration was about 2.4 kW, and the annual electricity output was approximately 17.47 MWh. The intervention of the turbine device had little influence on the near-field tidal stream or water level. The tidal stream was reduced slightly in the area south of the northern cape, although the effect weakened further from the turbine. Conversely, the velocity increased slightly on both sides of the demonstration site. The difference in current speed with and without the turbine was greater at slack tide than still tide. The influence of turbine operation on water level was minor. The method adopted in this study can be considered a reference for the selection of sites for the demonstration of tidal stream energy. However, the method is unable describe the dynamic characteristics of the turbulent flow surrounding the deployed turbines, which has an important role regarding the optimal designs of the turbine blade and pile foundations. Therefore, we will continue to work to improve this model in future research.展开更多
The European Structural Integrity Assessment Procedure(SINTAP) was applied to the assessment of welded joints of the API 5L X65 pipeline steel with an assumed embedded flaw and surface flaw at the weld toe. At defau...The European Structural Integrity Assessment Procedure(SINTAP) was applied to the assessment of welded joints of the API 5L X65 pipeline steel with an assumed embedded flaw and surface flaw at the weld toe. At default level( level 0), the assessment point was established by esti- mating fracture toughness value K1c conservatively from Charpy energy test data. At the same time, the analysis level 1 (basic level)was applied based on the fracture toughness CTOD. Then the two assessment levels were compared. The assessment results show that all assessment points are located within the failure lines of analysis levels 0 and 1. So the welded joint of the pipeline is safe. It can be concluded that the assessment based on Charpy absorbed energy is practicable when other fracture toughness data are not available, or cannot be easily obtained. The results are conservative.展开更多
An extensive review and analysis of the available global energy sources data and information from 38 countries including Pakistan, and their impacts (socio-economic, environmental, and health) shows that one of the ...An extensive review and analysis of the available global energy sources data and information from 38 countries including Pakistan, and their impacts (socio-economic, environmental, and health) shows that one of the most sustainable and environment friendly energy options (especially considering rural areas) is renewable energy (solar and wind), while other options (in descending order) are hydro, nuclear and coal. The use of "oil and gas" as energy option is not cost effective due to its serious environmental, health and financial implications. The cost of producing 1 KWh of energy from oil and gas in Pakistan is around Rs. 20 (U.S. $ 0.19), while the same costs for hydro power and coal are 1/10th and ~nd respectively. Appropriate and suitable energy options are proposed in view of the current energy situation, available natural resources (water, coal, wind and sun), serious energy conservation efforts and efficient usage of available energy.展开更多
Since the terrorist attacks of September 11,the world energy mar-kets have witnessed remarkable changes in Russia’s re-emergenceas a major world energy power and its active development of energydiplomacy.As the signi...Since the terrorist attacks of September 11,the world energy mar-kets have witnessed remarkable changes in Russia’s re-emergenceas a major world energy power and its active development of energydiplomacy.As the signing of agreements at the Russia-America summitand Russia-Europe summit last May as well as at the regular展开更多
In 2013, The Turkish Ministry of Environment and Urban Planning issued four thousand pages of a cut and paste Environmental Impact Assessment (EIA) report for the Akkuyu nuclear power plant and nuclear fuel fabricat...In 2013, The Turkish Ministry of Environment and Urban Planning issued four thousand pages of a cut and paste Environmental Impact Assessment (EIA) report for the Akkuyu nuclear power plant and nuclear fuel fabrication complex project located on Turkey's Mediterranean coastline, in the Mersin providence, which will be built on a build-own-operate basis by Russian company Rosatom. Numerous complaints have already been filed against the EIA, challenging the scientific integrity of the report on the following grounds: misrepresentation of failure to specify the radioactive inventory and of projected releases into the environment, omitting tritium and carbon-14; incomplete information about the toxic chemicals which will be injected into the cooling system throughout the nuclear complex; misleading information about the cooling water's temporal and chemical effects on marine life; lack of details on an emergency evacuation plan; lack of a comprehensive nuclear waste management plan; unspecified insurance coverage for the nuclear complex, noncompliance with third party liability requirements. Coupled with these complaints are allegations that signatures on some sensitive reports contained or referred to have been falsified.展开更多
Energy consumption and environmental impact considerations of machining processes are viewed as important issues for the global trends towards sustainable manufacturing. The existing research of reducing energy consum...Energy consumption and environmental impact considerations of machining processes are viewed as important issues for the global trends towards sustainable manufacturing. The existing research of reducing energy consumption and environmental impacts of machining processes greatly focuses on design and planning activities, but is reasonably sparse for production operation activities. This paper explores a systematic methodology that incorporates energy consumption and environmental impact considerations into the production operation of machining processes. Firstly, the framework of the methodology is proposed to establish the generic procedures for integrating the above considerations in production operation activities. As the two key issues of the framework, the profile index value matrix is determined by valuing the individual quantity of energy consumption and environmental impacts of machining each job on each machine, and the multi-criteria models are constructed by the operational methods. Furthermore, with the guideline of the framework, the specific formulations are modeled by two sub-models for the parallel machine scheduling problem, in which makespan and energy consumption are the optimizing objectives as well as the constraints of environmental impact considerations. The specific formulations provide a practical method to integrate energy consumption and environmental impact considerations into the scheduling activity, and also can serve as a reference to other activities in the production operation. The case study for a batch of jobs, including seven kinds of gears in the machining shop floor, is presented to demonstrate the application of the specific formulations of the methodology. The proposed methodology provides potential opportunities for reducing energy consumption and environmental impacts in machining processes, and helps production managers in decision-making on the issues of energy consumption and environmental impacts in the production operation.展开更多
High temperature treatment causes thermal damage to rocks in deep mining.To study the thermal effect on the energy dissipation of rocks during the dynamic cyclic loading,cyclic impact loading experiments of heat-treat...High temperature treatment causes thermal damage to rocks in deep mining.To study the thermal effect on the energy dissipation of rocks during the dynamic cyclic loading,cyclic impact loading experiments of heat-treated rocks were carried out using the splitting Hopkinson pressure bar(SHPB)experimental system.The correlations among the energy dissipation,energy dissipation rate,impact times,accumulated absorbed energy per volume,failure mode and temperature were analyzed.The results show that the reflected energy under the first impact increases and finally exceeds the absorbed energy when the temperature increases;however,the total reflected energy decreases above 200℃.The absorbed energy under the first impact and the total absorbed energy all decrease as the temperature increases,the rates of which decrease accordingly.And the same phenomenon appears for the transmitted energy and the rate of the transmitted energy.On the contrary,the rate of the reflected energy increases with the rising temperature.When the temperature increases,the fewer impact times are needed to destroy the sample.In addition,the failure modes are different when the rock is treated at different temperatures;that is,when the temperature is high,even though the absorbed energy is low,the sample breaks into powder after several impacts.展开更多
The impact energy prediction model of low carbon steel was investigated based on industrial data. A three-layer neural network, extreme learning machine, and deep neural network were compared with different activation...The impact energy prediction model of low carbon steel was investigated based on industrial data. A three-layer neural network, extreme learning machine, and deep neural network were compared with different activation functions, structure parameters, and training functions. Bayesian optimization was used to determine the optimal hyper-parameters of the deep neural network. The model with the best performance was applied to investigate the importance of process parameter variables on the impact energy of low carbon steel. The results show that the deep neural network obtains better prediction results than those of a shallow neural network because of the multiple hidden layers improving the learning ability of the model. Among the models, the Bayesian optimization deep neural network achieves the highest correlation coefficient of 0.9536, the lowest mean absolute relative error of 0.0843, and the lowest root mean square error of 17.34 J for predicting the impact energy of low carbon steel. Among the variables, the main factors affecting the impact energy of low carbon steel with a final thickness of7.5 mm are the thickness of the original slab, the thickness of intermediate slab, and the rough rolling exit temperature from the specific hot rolling production line.展开更多
The mechanical behaviors and energy dissipation characteristics of heat-treated granite were investigated under repeated impact loading.The granite samples were firstly heat-treated at the temperature of 20℃,200℃,40...The mechanical behaviors and energy dissipation characteristics of heat-treated granite were investigated under repeated impact loading.The granite samples were firstly heat-treated at the temperature of 20℃,200℃,400℃,and 600℃,respectively.The thermal damage characteristics of these samples were then observed and measured before impact tests.Dynamic impact compression tests finally were carried out using a modified split-Hopkinson pressure bar under three impact velocities of 12 m/s,15 m/s,and 18 m/s.These test results show that the mineral composition and the main oxides of the granite do not change with these treatment temperatures.The number of microcracks and microvoids decreases in the sample after 200℃ treatment.The mechanical properties of a sample after 600℃ treatment were rapidly deteriorated under the same impact velocity.The average of peak stress is much smaller than those after 20℃,200℃ and 400℃ treatments.The heat-treated samples have an energy threshold each.When the dissipated energy of a sample under a single impact is less than this threshold,the repeated impacts hardly lead to further damage accumulation even if its total breakage energy dissipation(BED)density is large.Under the same number of repeated impacts,the cumulative BED density of a sample after 600℃ treatment is the largest and its damage evolves most quickly.The total BED density of the sample after 200℃ treatment is the highest,which implies that this sample has better resistance to repeated impact,thus having less crack initiation and growth.展开更多
The impact corrosion-abrasion properties and mechanism of high manganese steel were investigated under different impact energies. The result shows that the wearability of the steel decreases with the increase of the i...The impact corrosion-abrasion properties and mechanism of high manganese steel were investigated under different impact energies. The result shows that the wearability of the steel decreases with the increase of the impact energy. The dominant failure mechanism at a lower impact energy is the rupture of extrusion edge along root and a slight shallow-layer spalling. It transforms to shallow-layer fatigue flaking along with serious corrosion-abrasion when the impact energy is increased, and finally changes to bulk flaking of hardened laver caused by deeo work-hardening and heaw corrosion-abrasion.展开更多
To further understand the hardening mechanism of austenitic manganese steel under actual working conditions, the work hardening ability was studied and the microstructures of austenitic manganese steel were observed u...To further understand the hardening mechanism of austenitic manganese steel under actual working conditions, the work hardening ability was studied and the microstructures of austenitic manganese steel were observed under different impact energies. The work hardening mechanism was also analyzed. The results show that the best strain hardening effect could be received only when the impact energy reaches or exceeds the critical impact energy. The microstructural observations reveal that dislocations, stacking faults and twins increase with raising impact energy of the tested specimens. The hardening mechanism changes at different hardening degrees. It is mainly dislocation and slip hardening below the critical impact energy, but it changes to the twinning hardening mechanism when the impact energy is above the critical impact energy.展开更多
The deformation characteristics of the cavity due to droplet impact on a water surface are experimentally investigated.Dimensional analysis shows that the characteristic values of time,depth,and horizontal diameter ca...The deformation characteristics of the cavity due to droplet impact on a water surface are experimentally investigated.Dimensional analysis shows that the characteristic values of time,depth,and horizontal diameter can be taken as 10^(-3)times the ratio of surface tension to the product of viscosity coefficient and gravitational acceleration,the maximum depth,and the maximum horizontal diameter,respectively.The evolutions of the dimensionless cavity sizes for different values of Weber number(We)coincide for 220<We<686.A partial-sphere model of cavity is established based on experimental observations.Energy models are then derived,and the energy conversions are calculated to identify the relationship between these conversions and cavity deformation.It is found that the kinetic energy model established under the hypothesis proposed by Leng is no longer applicable when the dimensionless time t^(*)<3.5,owing to deviations from the geometric model.展开更多
The US Green Building Council’s(USGBC)LEED guidelines have become the dominant third-party certification program for“green”buildings in the US.Given that buildings use 37%of all energy and 68%of all electricity whi...The US Green Building Council’s(USGBC)LEED guidelines have become the dominant third-party certification program for“green”buildings in the US.Given that buildings use 37%of all energy and 68%of all electricity while contributing substantially to air emission,waste generation,and water consumption issues in the US,one of LEED’s purposes is to address the environmental impacts of energy use in buildings.This research analyzes(1)how well the LEED guidelines measure these impacts and(2)which parameters create the most variation among these impacts.Environmental impacts here refer to emissions of carbon dioxide,nitrogen oxides,sulfur dioxide,mercury,and par-ticulate matter(PM10);solid waste;nuclear waste;and water consumption.Using data from the US Department of Energy,the National Renewable Energy Laboratory,the US EPA Energy Star program,and the USGBC,among others,models using Monte Carlo analysis were created to simulate the range of impacts of LEED-certified buildings.Various metrics and statistics were calculated to highlight the significance of variation in these impacts.Future re-search needs and implications of the results for LEED version 3.0 are also discussed.展开更多
To address the problem of conventional approaches for mechanical property determination requiring destructive sampling, which may be unsuitable for in-service structures, the authors proposed a method for determining ...To address the problem of conventional approaches for mechanical property determination requiring destructive sampling, which may be unsuitable for in-service structures, the authors proposed a method for determining the quasi-static fracture toughness and impact absorbed energy of ductile metals from spherical indentation tests (SITs). The stress status and damage mechanism of SIT, mode I fracture, Charpy impact tests, and related tests were frst investigated through fnite element (FE) calculations and scanning electron microscopy (SEM) observations, respectively. It was found that the damage mechanism of SITs is diferent from that of mode I fractures, while mode I fractures and Charpy impact tests share the same damage mechanism. Considering the diference between SIT and mode I fractures, uniaxial tension and pure shear were introduced to correlate SIT with mode I fractures. Based on this, the widely used critical indentation energy (CIE) model for fracture toughness determination using SITs was modifed. The quasi-static fracture toughness determined from the modifed CIE model was used to evaluate the impact absorbed energy using the dynamic fracture toughness and energy for crack initiation. The efectiveness of the newly proposed method was verifed through experiments on four types of steels: Q345R, SA508-3, 18MnMoNbR, and S30408.展开更多
Fused deposition modeling(FDM)-3D printing has been the favored technology to build functional components in various industries.The present study investigates infill percentage and infill pattern effects on the printe...Fused deposition modeling(FDM)-3D printing has been the favored technology to build functional components in various industries.The present study investigates infill percentage and infill pattern effects on the printed parts’impact properties through the 3D printing technique using coconut wood-filled PLA composites.Mathematical models are also proposed in the present study with the aim for future property prediction.According to the ASTM standard,fifteen specimens with different parameter combinations were printed using a low-cost FDM 3D printer to evaluate their impact properties.Statistical analysis was performed using MINITAB to validate the experimental data and model development.The experimental outcomes reveal the honeycomb pattern with 75%infill density achieves the highest energy absorption(0.837 J)and impact energy(5.1894 kJ/m^(2)).The p-value from statistical analysis clearly shows that all the impact properties are less than the alpha value of 0.05,suggesting all the properties are vital to determine the impact properties.The validation process affirms that the generated mathematical model for the energy absorbed and the impact energy is reliable at an acceptable level to predict their respective properties.The errors between the experimental value and the predicted value are 3.98%for the energy absorbed and 4.06%for impact energy.The findings are expected to provide insights on the impact behavior of the coconut wood-filled PLA composites prepared by FDM-3D printing and a mathematical model to predict the impact properties.展开更多
文摘The sharing of telecommunications infrastructure and power supply equipment is currently an applicable and very common model for grouping signal transmission and reception equipment and their power supply on the same site to ensure coverage of fixed, mobile, Internet and radio and television broadcasting networks. This study consists of producing an inventory of telecommunications and energy infrastructure sharing, focusing on the one hand on analyzing the impacts of active and passive sharing of telecommunications infrastructure from a technical point of view, particularly in terms of legal framework, deployment, coverage and exposure to electromagnetic radiation, and on the other hand on identifying the effects of infrastructure sharing from a socio-economic point of view in a multi-operator mobile telephony environment, by indicating the economic value of the revenue generated as a result of infrastructure sharing. Finally, the results will contribute to identify strategies for ensuring maximum deployment and coverage of the country, and for developing the information and communication technologies (ICT) sector in order to contribute to the digital transformation by digitising services using mobile telephony and the Internet in Burundi.
基金financially supported by the National Key Research and Development Program of China(No.2022YFC2905004)the China Postdoctoral Science Foundation(No.2023M742134)。
文摘Polypropylene(PP)fiber-reinforced cement-based tailings backfill(FRCTB)is a green compound material with superior crack resistance and has good prospects for application in underground mining.However,FRCTB exhibits susceptibility to dynamic events,such as impact ground pressure and blast vibrations.This paper investigates the energy and crack distribution behavior of FRCTB under dynamic impact,considering the height/diameter(H/D)effect.Split Hopkinson pressure bar,industrial computed tomography scan,and scanning electron microscopy(SEM)experiments were carried out on six types of FRCTB.Laboratory outcomes confirmed fiber aggregation at the bottom of specimens.When H/D was less than 0.8,the proportion of PP fibers distributed along theθangle direction of80°-90°increased.For the total energy,all samples presented similar energy absorption,reflectance,and transmittance.However,a rise in H/D may cause a rise in the energy absorption rate of FRCTB during the peak phase.A positive correlation existed between the average strain rate and absorbed energy per unit volume.The increase in H/D resulted in a decreased crack volume fraction of FRCTB.When the H/D was greater than or equal to 0.7,the maximum crack volume fraction of FRCTB was observed close to the incidence plane.Radial cracks were present only in the FRCTB with an H/D ratio of 0.5.Samples with H/D ratios of 0.5 and 0.6 showed similar distributions of weakly and heavily damaged areas.PP fibers can limit the emergence and expansion of cracks by influencing their path.SEM observations revealed considerable differences in the bonding strengths between fibers and the FRCTB.Fibers that adhered particularly well to the substrate were attracted together with the hydration products adhering to surfaces.These results show that FRCTB is promising as a sustainable and green backfill for determining the design properties of mining with backfill.
文摘Having experienced over 30 years of rapid growth,China’s economic development is entering a new normal featured by an ever optimizing economic structure shifting from high-speed to medium-high speed growth,and from factor-driven to innovation-driven pattern.In adapting
基金This work was supported by the Metal Foam Group of Amirkabir University(MFGAU)through Grant No.110-mir-13990531.The authors are grateful to Nowin Rahyaft Advanced Sciences and Technologies Knowledge Based Company for their support in casting and cutting the metal foams.
文摘The deformation behavior and crashworthiness of functionally-graded foam-filled tubes(FGFTs)under drop-weight impact loading were investigated.Closed cell aluminum,A356 alloy and zinc foams fabricated by the liquid state processing were used as axial grading fillers for the manufacture of single-layer and multilayer structures with different configurations.The results indicate that the deformation of multilayer foam filled tubes initiates from the low-strength components,and then propagates in the high-strength components through the gradual increment of stress.The use of more A356 alloy and aluminum foam layers provides greater specific energy absorption(SEA)for the graded structures,whereas the high-strength zinc foam has no positive effect on the crash performance.The progressive collapse of graded structures consisting of the aluminum and A356 alloy foams occurs in a symmetric mode under quasi-static and drop-weight impact conditions.However,the zinc foam causes a combination of symmetric and extension modes as well as greater localized deformation under dynamic loading and greater local rupture in quasi-static loading condition.The Al−A356 foam-filled tubes with a combination of the highest SEA(10 J/g)and the lowest initial peak stress(σmax of 10.2 MPa)are considered as the best lightweight crashworthy structures.
基金Supported by the Chinese Marine Renewable Energy Special Fund(Nos.GHME2012ZC05,GHME2013GC03,GHME2013ZC01,GHME2014ZC01)
文摘Using an improved FVCOM numerical model, combined with the momentum-sinking scheme based on the structural characteristics of specific turbines, this study analyzed the temporal and spatial distributions of tidal energy resources before and after the deployment of tidal turbines near Pingtan Island, China. Considering factors such as the distribution of tidal stream energy, bathymetry, topography, and the design parameters of the turbines, an appropriate location for a demonstration tidal turbine was selected and the corresponding energy resource was evaluated. Several sites with strong tidal streams were considered: south of the northern cape, east of the southem cape, and the southern end of Haitan Bay. The former was thought most suitable for the deployment of a tidal energy turbine, with projected power generation for approximately 470 h per month. The average power of this demonstration was about 2.4 kW, and the annual electricity output was approximately 17.47 MWh. The intervention of the turbine device had little influence on the near-field tidal stream or water level. The tidal stream was reduced slightly in the area south of the northern cape, although the effect weakened further from the turbine. Conversely, the velocity increased slightly on both sides of the demonstration site. The difference in current speed with and without the turbine was greater at slack tide than still tide. The influence of turbine operation on water level was minor. The method adopted in this study can be considered a reference for the selection of sites for the demonstration of tidal stream energy. However, the method is unable describe the dynamic characteristics of the turbulent flow surrounding the deployed turbines, which has an important role regarding the optimal designs of the turbine blade and pile foundations. Therefore, we will continue to work to improve this model in future research.
基金Supported by National Natural Science Foundation of China(No. 50375109)
文摘The European Structural Integrity Assessment Procedure(SINTAP) was applied to the assessment of welded joints of the API 5L X65 pipeline steel with an assumed embedded flaw and surface flaw at the weld toe. At default level( level 0), the assessment point was established by esti- mating fracture toughness value K1c conservatively from Charpy energy test data. At the same time, the analysis level 1 (basic level)was applied based on the fracture toughness CTOD. Then the two assessment levels were compared. The assessment results show that all assessment points are located within the failure lines of analysis levels 0 and 1. So the welded joint of the pipeline is safe. It can be concluded that the assessment based on Charpy absorbed energy is practicable when other fracture toughness data are not available, or cannot be easily obtained. The results are conservative.
文摘An extensive review and analysis of the available global energy sources data and information from 38 countries including Pakistan, and their impacts (socio-economic, environmental, and health) shows that one of the most sustainable and environment friendly energy options (especially considering rural areas) is renewable energy (solar and wind), while other options (in descending order) are hydro, nuclear and coal. The use of "oil and gas" as energy option is not cost effective due to its serious environmental, health and financial implications. The cost of producing 1 KWh of energy from oil and gas in Pakistan is around Rs. 20 (U.S. $ 0.19), while the same costs for hydro power and coal are 1/10th and ~nd respectively. Appropriate and suitable energy options are proposed in view of the current energy situation, available natural resources (water, coal, wind and sun), serious energy conservation efforts and efficient usage of available energy.
文摘Since the terrorist attacks of September 11,the world energy mar-kets have witnessed remarkable changes in Russia’s re-emergenceas a major world energy power and its active development of energydiplomacy.As the signing of agreements at the Russia-America summitand Russia-Europe summit last May as well as at the regular
文摘In 2013, The Turkish Ministry of Environment and Urban Planning issued four thousand pages of a cut and paste Environmental Impact Assessment (EIA) report for the Akkuyu nuclear power plant and nuclear fuel fabrication complex project located on Turkey's Mediterranean coastline, in the Mersin providence, which will be built on a build-own-operate basis by Russian company Rosatom. Numerous complaints have already been filed against the EIA, challenging the scientific integrity of the report on the following grounds: misrepresentation of failure to specify the radioactive inventory and of projected releases into the environment, omitting tritium and carbon-14; incomplete information about the toxic chemicals which will be injected into the cooling system throughout the nuclear complex; misleading information about the cooling water's temporal and chemical effects on marine life; lack of details on an emergency evacuation plan; lack of a comprehensive nuclear waste management plan; unspecified insurance coverage for the nuclear complex, noncompliance with third party liability requirements. Coupled with these complaints are allegations that signatures on some sensitive reports contained or referred to have been falsified.
基金supported by National Natural Science Foundation of China (Grant No. 50775228)Program for New Century Excellent Talents in University of Ministry of Education, China (Grant No. NCET-07-0907)Chongqing Provincal Natural Science Foundation of China (Grant No. 2010BB0055)
文摘Energy consumption and environmental impact considerations of machining processes are viewed as important issues for the global trends towards sustainable manufacturing. The existing research of reducing energy consumption and environmental impacts of machining processes greatly focuses on design and planning activities, but is reasonably sparse for production operation activities. This paper explores a systematic methodology that incorporates energy consumption and environmental impact considerations into the production operation of machining processes. Firstly, the framework of the methodology is proposed to establish the generic procedures for integrating the above considerations in production operation activities. As the two key issues of the framework, the profile index value matrix is determined by valuing the individual quantity of energy consumption and environmental impacts of machining each job on each machine, and the multi-criteria models are constructed by the operational methods. Furthermore, with the guideline of the framework, the specific formulations are modeled by two sub-models for the parallel machine scheduling problem, in which makespan and energy consumption are the optimizing objectives as well as the constraints of environmental impact considerations. The specific formulations provide a practical method to integrate energy consumption and environmental impact considerations into the scheduling activity, and also can serve as a reference to other activities in the production operation. The case study for a batch of jobs, including seven kinds of gears in the machining shop floor, is presented to demonstrate the application of the specific formulations of the methodology. The proposed methodology provides potential opportunities for reducing energy consumption and environmental impacts in machining processes, and helps production managers in decision-making on the issues of energy consumption and environmental impacts in the production operation.
基金Project(2016YFC0600706) supported by the State Key Research Development Program of ChinaProjects(41630642,51774325) supported by the National Natural Science Foundation of China+1 种基金Project(2017JJ3389) supported by the Natural Science Foundation of Hunan Province,ChinaProjects(2017CX006,2018zzts212) supported by the Innovation-Driven Program of Central South University,China
文摘High temperature treatment causes thermal damage to rocks in deep mining.To study the thermal effect on the energy dissipation of rocks during the dynamic cyclic loading,cyclic impact loading experiments of heat-treated rocks were carried out using the splitting Hopkinson pressure bar(SHPB)experimental system.The correlations among the energy dissipation,energy dissipation rate,impact times,accumulated absorbed energy per volume,failure mode and temperature were analyzed.The results show that the reflected energy under the first impact increases and finally exceeds the absorbed energy when the temperature increases;however,the total reflected energy decreases above 200℃.The absorbed energy under the first impact and the total absorbed energy all decrease as the temperature increases,the rates of which decrease accordingly.And the same phenomenon appears for the transmitted energy and the rate of the transmitted energy.On the contrary,the rate of the reflected energy increases with the rising temperature.When the temperature increases,the fewer impact times are needed to destroy the sample.In addition,the failure modes are different when the rock is treated at different temperatures;that is,when the temperature is high,even though the absorbed energy is low,the sample breaks into powder after several impacts.
基金financially supported by the National Natural Science Foundation of China (No.U1960202)the China Post-doctoral Science Foundation funded Projects (No.2019M651467)the Natural Science Foundation Joint Fund Project of Liaoning Province, China (No.2019-KF-2506)。
文摘The impact energy prediction model of low carbon steel was investigated based on industrial data. A three-layer neural network, extreme learning machine, and deep neural network were compared with different activation functions, structure parameters, and training functions. Bayesian optimization was used to determine the optimal hyper-parameters of the deep neural network. The model with the best performance was applied to investigate the importance of process parameter variables on the impact energy of low carbon steel. The results show that the deep neural network obtains better prediction results than those of a shallow neural network because of the multiple hidden layers improving the learning ability of the model. Among the models, the Bayesian optimization deep neural network achieves the highest correlation coefficient of 0.9536, the lowest mean absolute relative error of 0.0843, and the lowest root mean square error of 17.34 J for predicting the impact energy of low carbon steel. Among the variables, the main factors affecting the impact energy of low carbon steel with a final thickness of7.5 mm are the thickness of the original slab, the thickness of intermediate slab, and the rough rolling exit temperature from the specific hot rolling production line.
基金This study was financially supported by the National Natural Science Foundation of China(51579062,51379147),which is gratefully appreciated.
文摘The mechanical behaviors and energy dissipation characteristics of heat-treated granite were investigated under repeated impact loading.The granite samples were firstly heat-treated at the temperature of 20℃,200℃,400℃,and 600℃,respectively.The thermal damage characteristics of these samples were then observed and measured before impact tests.Dynamic impact compression tests finally were carried out using a modified split-Hopkinson pressure bar under three impact velocities of 12 m/s,15 m/s,and 18 m/s.These test results show that the mineral composition and the main oxides of the granite do not change with these treatment temperatures.The number of microcracks and microvoids decreases in the sample after 200℃ treatment.The mechanical properties of a sample after 600℃ treatment were rapidly deteriorated under the same impact velocity.The average of peak stress is much smaller than those after 20℃,200℃ and 400℃ treatments.The heat-treated samples have an energy threshold each.When the dissipated energy of a sample under a single impact is less than this threshold,the repeated impacts hardly lead to further damage accumulation even if its total breakage energy dissipation(BED)density is large.Under the same number of repeated impacts,the cumulative BED density of a sample after 600℃ treatment is the largest and its damage evolves most quickly.The total BED density of the sample after 200℃ treatment is the highest,which implies that this sample has better resistance to repeated impact,thus having less crack initiation and growth.
基金the Doctoral Authorization Point Foundation of Education Ministry of China(No.20040359004)the Major Project Foundation of Education Office of Anhui Province(No.KJ2007A060)
文摘The impact corrosion-abrasion properties and mechanism of high manganese steel were investigated under different impact energies. The result shows that the wearability of the steel decreases with the increase of the impact energy. The dominant failure mechanism at a lower impact energy is the rupture of extrusion edge along root and a slight shallow-layer spalling. It transforms to shallow-layer fatigue flaking along with serious corrosion-abrasion when the impact energy is increased, and finally changes to bulk flaking of hardened laver caused by deeo work-hardening and heaw corrosion-abrasion.
基金supported by the Special Foundation for Introducing and Selecting Talent in Hefei University of Technology, China (No. 2004000197)
文摘To further understand the hardening mechanism of austenitic manganese steel under actual working conditions, the work hardening ability was studied and the microstructures of austenitic manganese steel were observed under different impact energies. The work hardening mechanism was also analyzed. The results show that the best strain hardening effect could be received only when the impact energy reaches or exceeds the critical impact energy. The microstructural observations reveal that dislocations, stacking faults and twins increase with raising impact energy of the tested specimens. The hardening mechanism changes at different hardening degrees. It is mainly dislocation and slip hardening below the critical impact energy, but it changes to the twinning hardening mechanism when the impact energy is above the critical impact energy.
基金supported by the National Natural Science Foundation of China(11872271)the Major Scientific and Technological Projects of Tianjin(18ZXRHSF00270).
文摘The deformation characteristics of the cavity due to droplet impact on a water surface are experimentally investigated.Dimensional analysis shows that the characteristic values of time,depth,and horizontal diameter can be taken as 10^(-3)times the ratio of surface tension to the product of viscosity coefficient and gravitational acceleration,the maximum depth,and the maximum horizontal diameter,respectively.The evolutions of the dimensionless cavity sizes for different values of Weber number(We)coincide for 220<We<686.A partial-sphere model of cavity is established based on experimental observations.Energy models are then derived,and the energy conversions are calculated to identify the relationship between these conversions and cavity deformation.It is found that the kinetic energy model established under the hypothesis proposed by Leng is no longer applicable when the dimensionless time t^(*)<3.5,owing to deviations from the geometric model.
基金supported by the Institute for the Environment at the University of North Carolina (UNC)at Chapel Hill and Cherokee Investment Partners.
文摘The US Green Building Council’s(USGBC)LEED guidelines have become the dominant third-party certification program for“green”buildings in the US.Given that buildings use 37%of all energy and 68%of all electricity while contributing substantially to air emission,waste generation,and water consumption issues in the US,one of LEED’s purposes is to address the environmental impacts of energy use in buildings.This research analyzes(1)how well the LEED guidelines measure these impacts and(2)which parameters create the most variation among these impacts.Environmental impacts here refer to emissions of carbon dioxide,nitrogen oxides,sulfur dioxide,mercury,and par-ticulate matter(PM10);solid waste;nuclear waste;and water consumption.Using data from the US Department of Energy,the National Renewable Energy Laboratory,the US EPA Energy Star program,and the USGBC,among others,models using Monte Carlo analysis were created to simulate the range of impacts of LEED-certified buildings.Various metrics and statistics were calculated to highlight the significance of variation in these impacts.Future re-search needs and implications of the results for LEED version 3.0 are also discussed.
基金Supported by National Natural Science Foundation of China(Grant No.52275154)National Key Research and Development Project of China(Grant No.2016YFF0203005).
文摘To address the problem of conventional approaches for mechanical property determination requiring destructive sampling, which may be unsuitable for in-service structures, the authors proposed a method for determining the quasi-static fracture toughness and impact absorbed energy of ductile metals from spherical indentation tests (SITs). The stress status and damage mechanism of SIT, mode I fracture, Charpy impact tests, and related tests were frst investigated through fnite element (FE) calculations and scanning electron microscopy (SEM) observations, respectively. It was found that the damage mechanism of SITs is diferent from that of mode I fractures, while mode I fractures and Charpy impact tests share the same damage mechanism. Considering the diference between SIT and mode I fractures, uniaxial tension and pure shear were introduced to correlate SIT with mode I fractures. Based on this, the widely used critical indentation energy (CIE) model for fracture toughness determination using SITs was modifed. The quasi-static fracture toughness determined from the modifed CIE model was used to evaluate the impact absorbed energy using the dynamic fracture toughness and energy for crack initiation. The efectiveness of the newly proposed method was verifed through experiments on four types of steels: Q345R, SA508-3, 18MnMoNbR, and S30408.
基金financial support provided under the Grants RDU190350,RDU190351,and RDU190352.
文摘Fused deposition modeling(FDM)-3D printing has been the favored technology to build functional components in various industries.The present study investigates infill percentage and infill pattern effects on the printed parts’impact properties through the 3D printing technique using coconut wood-filled PLA composites.Mathematical models are also proposed in the present study with the aim for future property prediction.According to the ASTM standard,fifteen specimens with different parameter combinations were printed using a low-cost FDM 3D printer to evaluate their impact properties.Statistical analysis was performed using MINITAB to validate the experimental data and model development.The experimental outcomes reveal the honeycomb pattern with 75%infill density achieves the highest energy absorption(0.837 J)and impact energy(5.1894 kJ/m^(2)).The p-value from statistical analysis clearly shows that all the impact properties are less than the alpha value of 0.05,suggesting all the properties are vital to determine the impact properties.The validation process affirms that the generated mathematical model for the energy absorbed and the impact energy is reliable at an acceptable level to predict their respective properties.The errors between the experimental value and the predicted value are 3.98%for the energy absorbed and 4.06%for impact energy.The findings are expected to provide insights on the impact behavior of the coconut wood-filled PLA composites prepared by FDM-3D printing and a mathematical model to predict the impact properties.