A generalized type of spiral Bessel beam has been demonstrated by using a spatially displaced helical axicon (HA). The topological charge of the spiraling Bessel beams is determined by the order of the input Laguerr...A generalized type of spiral Bessel beam has been demonstrated by using a spatially displaced helical axicon (HA). The topological charge of the spiraling Bessel beams is determined by the order of the input Laguerre Gaussian (LG) beam and the topological charge of the HA. The obtained spiraling Bessel beams have an LG type of modulation along their propagation direction and exhibit annihilation-reconstruction properties. Theoretical analysis is presented, including that of the stability, propagation distance, topological charge, and spiraling dynamic characteristics. The mathematical and numerical results show that the propagation distance and helical revolution of the spiraling Bessel beams can be controlled through choosing appropriate radius of the HA.展开更多
In the femtosecond two-photon polymerization(2PP)experimental system,optical aberrations degrade the fabrication quality.To solve this issue,a multichannel interferometric wavefront sensing technique is adopted in the...In the femtosecond two-photon polymerization(2PP)experimental system,optical aberrations degrade the fabrication quality.To solve this issue,a multichannel interferometric wavefront sensing technique is adopted in the adaptive laser processing system with a single phase-only spatial light modulator.2PP fabrications using corrected high-order Bessel beams with the above solution have been conducted,and high-quality microstructure arrays of microtubes with 20μm diameter have been rapidly manufactured.The effectiveness of the proposed scheme is demonstrated by comparing the beam intensity distributions and 2PP results before and after aberration corrections.展开更多
We experimentally study the generation of a partially coherent non-diffractive beam by focusing a partially coherent vortex beam with an axieon. The investigation results show that when the partially coherent vortex b...We experimentally study the generation of a partially coherent non-diffractive beam by focusing a partially coherent vortex beam with an axieon. The investigation results show that when the partially coherent vortex beam is focused by the axicon, the beam is transferred into a partially coherent higher-order non-diffractive beam. In the non-diffractive zone, the transverse intensity distribution of the partially coherent higher-order non-diffractive beam is invariant during propagation. In addition, the range of the non-diffractive zone is related to the coherence of the partially coherent vortex beam. The poorer the coherence of the partially coherent vortex beam, the shorter the range of the non-diffractive zone.展开更多
基金Project supported by the National Basic Research Program of China(Grant No.2011CB301801)the National Natural Science Foundation of China(Grant Nos.10974039,11047153,10904027,61008039,and 11104049)+1 种基金the Doctoral Program of Higher Education of China(Grant No.20102302120009)the Fundamental Research Funds for the Central Universities of China(Grant No.2009038)
文摘A generalized type of spiral Bessel beam has been demonstrated by using a spatially displaced helical axicon (HA). The topological charge of the spiraling Bessel beams is determined by the order of the input Laguerre Gaussian (LG) beam and the topological charge of the HA. The obtained spiraling Bessel beams have an LG type of modulation along their propagation direction and exhibit annihilation-reconstruction properties. Theoretical analysis is presented, including that of the stability, propagation distance, topological charge, and spiraling dynamic characteristics. The mathematical and numerical results show that the propagation distance and helical revolution of the spiraling Bessel beams can be controlled through choosing appropriate radius of the HA.
基金supported by the National Natural Science Foundation of China(Nos.62275191,61605142,and 61827821)the Tianjin Research Program of Application FoundationandAdvancedTechnologyofChina(No.17JCJQJC43500)+2 种基金the Open Fund of the State Key Laboratory of High Field Laser Physics,Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciencesthe European Research Council(No.682032-PULSAR)the Agence Nationale de la Recherche(Nos.ANR-15-IDEX0003 and ANR-17-EURE-0002)。
文摘In the femtosecond two-photon polymerization(2PP)experimental system,optical aberrations degrade the fabrication quality.To solve this issue,a multichannel interferometric wavefront sensing technique is adopted in the adaptive laser processing system with a single phase-only spatial light modulator.2PP fabrications using corrected high-order Bessel beams with the above solution have been conducted,and high-quality microstructure arrays of microtubes with 20μm diameter have been rapidly manufactured.The effectiveness of the proposed scheme is demonstrated by comparing the beam intensity distributions and 2PP results before and after aberration corrections.
基金Project supported by the National Natural Science Foundation of China (Grant No.60977068)the Foundations of the State Key Laboratory for Transient Optical and Photonic Technology of Chinese Academy of Sciences (Grant No.SKL ST200912)
文摘We experimentally study the generation of a partially coherent non-diffractive beam by focusing a partially coherent vortex beam with an axieon. The investigation results show that when the partially coherent vortex beam is focused by the axicon, the beam is transferred into a partially coherent higher-order non-diffractive beam. In the non-diffractive zone, the transverse intensity distribution of the partially coherent higher-order non-diffractive beam is invariant during propagation. In addition, the range of the non-diffractive zone is related to the coherence of the partially coherent vortex beam. The poorer the coherence of the partially coherent vortex beam, the shorter the range of the non-diffractive zone.