期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Nuclear Factor-κB Signaling Mediates Antimony-induced Astrocyte Activation 被引量:2
1
作者 ZHANG Tao ZHENG Yu Dan +5 位作者 JIAO Man ZH Ye XU Shen Ya ZHU Piao Yu ZHAO Xin Yuan WU Qi Yun 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2021年第1期29-39,共11页
Objective Antimony(Sb)has recently been identified as a novel nerve poison,although the cellular and molecular mechanisms underlying its neurotoxicity remain unclear.This study aimed to assess the effects of the nucle... Objective Antimony(Sb)has recently been identified as a novel nerve poison,although the cellular and molecular mechanisms underlying its neurotoxicity remain unclear.This study aimed to assess the effects of the nuclear factor kappa B(NF-κB)signaling pathway on antimony-induced astrocyte activation.Methods Protein expression levels were detected by Western blotting.Immunofluorescence,cytoplasmic and nuclear fractions separation were used to assess the distribution of p65.The expression of protein in brain tissue sections was detected by immunohistochemistry.The levels of mRNAs were detected by Quantitative real-time polymerase chain reaction(qRT-PCR)and reverse transcriptionpolymerase chain reaction(RT-PCR).Results Antimony exposure triggered astrocyte proliferation and increased the expression of two critical protein markers of reactive astrogliosis,inducible nitric oxide synthase(iNOS)and glial fibrillary acidic protein(GFAP),indicating that antimony induced astrocyte activation in vivo and in vitro.Antimony exposure consistently upregulated the expression of inflammatory factors.Moreover,it induced the NF-κB signaling,indicated by increased p65 phosphorylation and translocation to the nucleus.NF-κB inhibition effectively attenuated antimony-induced astrocyte activation.Furthermore,antimony phosphorylated TGF-β-activated kinase 1(TAK1),while TAK1 inhibition alleviated antimonyinduced p65 phosphorylation and subsequent astrocyte activation.Conclusion Antimony activated astrocytes by activating the NF-κB signaling pathway. 展开更多
关键词 ANTIMONY astrocyte activation NEUROTOXICITY NF-ΚB TAK1
下载PDF
PPARαactivation inhibits astrocyte over acti⁃vation by restoring autophagy flux after tran⁃sient brain ischemia
2
作者 LUO Dou-dou YE Wen-xuan +3 位作者 YUAN Xiao-qian ZHANG Ya-li JIN Xin ZHOU Yu 《中国药理学与毒理学杂志》 CAS 北大核心 2021年第9期678-678,共1页
OBJECTIVE Astrocytes activa⁃tion and glial scar formation are the important causes that hinder the recovery of motor function after cerebral ischemia.However,its precise mechanism has not been clarified.Peroxisome pro... OBJECTIVE Astrocytes activa⁃tion and glial scar formation are the important causes that hinder the recovery of motor function after cerebral ischemia.However,its precise mechanism has not been clarified.Peroxisome proliferator-activated receptorα(PPARα)is a ligand-activated nuclear transcriptional factor.This study aims to further clarify the role of PPARαin astrocyte activation after cerebral isch⁃emia and explore the underlying mechanism.METHODS Astrocyte activation in vivo model was induced by transient middle cerebral artery occlusion(tMCAO)in mice and in vitro model was induced by oxygen-glucose deprivation/reox⁃ygenation(OGD/R)in primary culture of mouse astrocyte.The effects of PPARαon astrocyte ac⁃tivation and autophagy flux were observed in the condition of PPARαdysfunction(PPARαnull mice)or PPARαactivation by oleoylethanol⁃amide(OEA).RESULTS PPARαmainly ex⁃pressed in activated astrocytes during the chron⁃ic phase of brain ischemia and PPARαdysfunc⁃tion promoted astrocytes activation after brain ischemia in vivo and in vitro.After cerebral isch⁃emia,the expressions of LC3-Ⅱ/Ⅰand P62 both increased in the brain tissue near the infarct core.Autophagic vesicles accumulation was ob⁃served by electron microscopy in astrocytes,and mRFP-GFP-LC3 adenovirus infection assay indi⁃cated the block of autophagy flux.PPARαdys⁃function aggravated autophagy flux block,while PPARαactivation preserved the lysosome func⁃tion and restored autophagy flux in astrocytes after OGD/R.Autophagy flux blocker bafilomycin A1 and chloroquine antagonized the effect of OEA on inhibiting astrocyte activation.CONCLU⁃SION PPARαactivation inhibites the over-activa⁃tion of astrocytes by restoring the autophagy flux after cerebral ischemia. 展开更多
关键词 astrocyte activation AUTOPHAGY au⁃tophagy flux ischemic stroke peroxisome prolif⁃erator-activated receptorα LYSOSOME
下载PDF
When and how does brain-derived neurotrophic factor activate Nrf2 in astrocytes and neurons? 被引量:1
3
作者 Tetsuro Ishii Giovanni E.Mann 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第5期803-804,共2页
Circadian rhythm protects neurons:Although the master clock entrains the whole body rhythm,peripheral tissues also express core clock transcription factors Clock and Bmal1,which regulate expression of clock genes inc... Circadian rhythm protects neurons:Although the master clock entrains the whole body rhythm,peripheral tissues also express core clock transcription factors Clock and Bmal1,which regulate expression of clock genes including Period(Per)and Cryptochrome(Cry)proteins.Complexes of Per and Cry proteins repress Bmal1-and Clock-mediated transcription forming a negative feedback loop,which regulates nearly a 24 hours self-sustained rhythm including energy metabolism. 展开更多
关键词 When and how does brain-derived neurotrophic factor activate Nrf2 in astrocytes and neurons NGF
下载PDF
Edaravone protects against oxygen-glucose-serum deprivation/restoration-induced apoptosis in spinal cord astrocytes by inhibiting integrated stress response 被引量:2
4
作者 Bin Dai Ting Yan +7 位作者 Yi-xing Shen You-jia Xu Hai-bin Shen Dong Chen Jin-rong Wang Shuang-hua He Qi-rong Dong Ai-liang Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第2期283-289,共7页
We previously found that oxygen-glucose-serum deprivation/restoration(OGSD/R) induces apoptosis of spinal cord astrocytes, possibly via caspase-12 and the integrated stress response, which involves protein kinase R-... We previously found that oxygen-glucose-serum deprivation/restoration(OGSD/R) induces apoptosis of spinal cord astrocytes, possibly via caspase-12 and the integrated stress response, which involves protein kinase R-like endoplasmic reticulum kinase(PERK), eukaryotic initiation factor 2-alpha(eIF2α) and activating transcription factor 4(ATF4). We hypothesized that edaravone, a low molecular weight, lipophilic free radical scavenger, would reduce OGSD/R-induced apoptosis of spinal cord astrocytes. To test this, we established primary cultures of rat astrocytes, and exposed them to 8 hours/6 hours of OGSD/R with or without edaravone(0.1, 1, 10, 100 μM) treatment. We found that 100 μM of edaravone significantly suppressed astrocyte apoptosis and inhibited the release of reactive oxygen species. It also inhibited the activation of caspase-12 and caspase-3, and reduced the expression of homologous CCAAT/enhancer binding protein, phosphorylated(p)-PERK, p-eIF2α, and ATF4. These results point to a new use of an established drug in the prevention of OGSD/R-mediated spinal cord astrocyte apoptosis via the integrated stress response. 展开更多
关键词 nerve regeneration edaravone apoptosis astrocytes integrated stress response reactive oxygen species PERK eIF2α activating transcription factor 4 CCAAT/enhancer binding protein homologous protein caspase-3 caspase-12 neural regeneration
下载PDF
Association of Glial Activation and α-Synuclein Pathology in Parkinson's Disease 被引量:4
5
作者 Rui Wang Haigang Ren +2 位作者 Elena Kaznacheyeva Xiaojun Lu Guanghui Wang 《Neuroscience Bulletin》 SCIE CAS CSCD 2023年第3期479-490,共12页
The accumulation of pathological α-synuclein(α-syn)in the central nervous system and the progressive loss of dopaminergic neurons in the substantia nigra pars compacta are the neuropathological features of Parkinson... The accumulation of pathological α-synuclein(α-syn)in the central nervous system and the progressive loss of dopaminergic neurons in the substantia nigra pars compacta are the neuropathological features of Parkinson's disease(PD).Recently,the findings of prion-like transmission of α-syn pathology have expanded our understanding of the region-specific distribution ofα-syn in PD patients.Accumulating evidence suggests that α-syn aggregates are released from neurons and endocytosed by glial cells,which contributes to the clearance of α-syn.However,the activation of glial cells by α-syn species produces pro-inflammatory factors that decrease the uptake of α-syn aggregates by glial cells and promote the transmission of α-syn between neurons,which promotes the spread of α-syn pathology.In this article,we provide an overview of current knowledge on the role of glia and α-syn pathology in PD pathogenesis,highlighting the relationships between glial responses and the spread ofα-syn pathology. 展开更多
关键词 Parkinson's disease α-synuclein pathology Microglial activation astrocyte activation Neuroinfammation
原文传递
The glial scar in spinal cord injury and repair 被引量:29
6
作者 Yi-Min Yuan Cheng He 《Neuroscience Bulletin》 SCIE CAS CSCD 2013年第4期421-435,共15页
Glial scarring following severe tissue damage and inflammation after spinal cord injury (SCI) is due to an extreme, uncontrolled form of reactive astrogliosis that typically occurs around the injury site. The scarri... Glial scarring following severe tissue damage and inflammation after spinal cord injury (SCI) is due to an extreme, uncontrolled form of reactive astrogliosis that typically occurs around the injury site. The scarring process includes the misalignment of activated astrocytes and the deposition of inhibitory chondroitin sulfate proteoglycans. Here, we first discuss recent developments in the molecular and cellular features of glial scar formation, with special focus on the potential cellular origin of scar-forming cells and the molecular mechanisms underlying glial scar formation after SCI. Second, we discuss the role of glial scar formation in the regulation of axonal regeneration and the cascades of neuro-inflammation. Last, we summarize the physical and pharmacological approaches targeting the modulation of glial scarring to better understand the role of glial scar formation in the repair of SCI. 展开更多
关键词 glial scar spinal cord injury axonal regeneration astrocyte activation reactive astrogliosis neuro-inflammation
原文传递
Intense exercise can cause excessive apoptosis and synapse plasticity damage in rat hippocampus through Ca2+ overload and endoplasmic reticulum stress-induced apoptosis pathway 被引量:15
7
作者 Ding Yi Chang Cunqing Xie Lan Chen Zhimin Ai Hua 《Chinese Medical Journal》 SCIE CAS CSCD 2014年第18期3265-3271,共7页
Background Intense exercise can cause injury and apoptosis, but few studies have reported its effect on the central nervous system (CNS). The initial reason for hippocampus injury is the excitotoxicity of glutamate ... Background Intense exercise can cause injury and apoptosis, but few studies have reported its effect on the central nervous system (CNS). The initial reason for hippocampus injury is the excitotoxicity of glutamate and calcium overload. Intracellular free Ca2+ ([Ca2+]i) overload may trigger the apoptosis pathway and neuron damage. The aim of this study was to investigate whether intense exercise could cause hippocampus apoptosis and neuron damage and then to determine which pathway was activated by this apoptosis. Methods We used one bout of swimming exhaustion rats as models. Intracellular [Ca2~]i was measured to estimate the calcium overload by Fura-2/AM immediately after exhaustion; glial fibrillary acidic protein (GFAP) and synaptophysin (SYP) immunofluorescence were performed for estimating astrocyte activation and synapse plasticity 24 hours after exhaustion. Apoptosis cells were displayed using dUTP nick end labelling (TUNEL) stain; endoplasmic reticulum (ER) stress-induced apoptosis pathway and mitochondrial apoptosis pathway were synchronously detected by Western blotting. Results An increasing level of intracellular [Ca2+]i (P 〈0.01) was found in the hippocampus immediately after exhaustion. GFAP and SYP immunofluorescence showed that the astrocytes are activated, and the synapse plasticity collapsed significantly 24 hours after exhaustion. TUNEL stain showed that the number of apoptosis cells were notably raised (P 〈0.01); Western blotting of the apoptosis pathway showed increasing levels of caspase-3 cleavage (P 〈0.01), Bax (P 〈0.01), caspase-12 cleavage (P 〈0.01), C/EBP-homologous protein (CHOP) (P 〈0.01), and phospho-Junamino- terminal kinases (p-JNK; P 〈0.01) and decreasing level of Bcl-2 (P 〈0.01). Our results proved that exhaustion can induce hippocampus injury and apoptosis by [Ca2+]i overload, with collapsed synaptic plasticity as the injury pattern and ER stress-induced apoptosis as the activated pathway. Conclusion Intense exercise can cause excessive apoptosis and synapse plasticity damage in the hippocampus with [Ca2+]i overload as the initial reason, and thus provides leads for therapeutic interventions in the brain health of athletes. 展开更多
关键词 intense exercise EXHAUSTION hippocampus endoplasmic reticulum stress-induced apoptosis synapse plasticity astrocytes activation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部