In this work,phase and morphology-tuned MoO_(3) nanostructures are synthesized through a novel modified co-precipitation method,and their electrochemical properties are investigated.For the first time,such a simple su...In this work,phase and morphology-tuned MoO_(3) nanostructures are synthesized through a novel modified co-precipitation method,and their electrochemical properties are investigated.For the first time,such a simple surfactant-assisted synthesis process aided by minor temperature variations is reported which results in phase transition of the nanoparticles from h-MoO_(3) nano-rods to a-MoO_(3) nano-flakes.The nanostructures thus developed are highly porous and crystalline with significantly large specific surface area as compared to previous literature.The theoretical bandgap energy of the optimized sample calculated using Perdew-Zunger local density approximation(LDA) is in good agreement with the experimental findings.An overall structural,morphological,and surface-behavioural analysis predicts the electrochemical superiority in 2D a-MoO_(3).The cyclic voltammetry and galvano-potentiometry measurements of 2D a-MoO_(3) in the potential window of-0.6 V to +0.2 V present the highest pseudosupercapacitive response with a maximum specific capacitance of 829 F g^(-1)at 2 A g^(-1)as compared to h-MoO_(3) (452 F g^(-1)) and h@a-MoO_(3) (783 F g^(-1)).Thus,the MoO_(3) 2D nanostructures synthesized through our novel synthesis technique display excellent specific capacitance as compared to previous reported data.Additionally,a-MoO_(3) exhibits a galvanostatic charging-discharging cyclic stability of about 91%after 2000 cycles,indicating that it can serve as an excellent electrode material for supercapacitors.A solid-state asymmetric supercapacitor device is successfully constructed using a-MoO_(3) which can light up 4 red LEDs for 10 s.The specific energy density of the device reaches a maximum value of 36.3 W h kg^(-1)at the power density of 50 W kg^(-1).展开更多
In this paper, a novel non-monotonic Lyapunov-Krasovskii functional approach is proposed to deal with the stability analysis and stabilization problem of linear discrete time-delay systems. This technique is utilized ...In this paper, a novel non-monotonic Lyapunov-Krasovskii functional approach is proposed to deal with the stability analysis and stabilization problem of linear discrete time-delay systems. This technique is utilized to relax the monotonic requirement of the Lyapunov-Krasovskii theorem. In this regard, the Lyapunov-Krasovskii functional is allowed to increase in a few steps, while being forced to be overall decreasing. As a result, it relays on a larger class of Lyapunov-Krasovskii functionals to provide stability of a state-delay system. To this end, using the non-monotonic Lyapunov-Krasovskii theorem, new sufficient conditions are derived regarding linear matrix inequalities(LMIs)to study the global asymptotic stability of state-delay systems.Moreover, new stabilization conditions are also proposed for time-delay systems in this article. Both simulation and experimental results on a p H neutralizing process are provided to demonstrate the efficacy of the proposed method.展开更多
By virtue of the atom-and step-economy, utilization of simple arenes as a supplant of pre-prepared aryl metal species or aryl halides for the synthesis of arylated chiral molecules has attracted great attention from t...By virtue of the atom-and step-economy, utilization of simple arenes as a supplant of pre-prepared aryl metal species or aryl halides for the synthesis of arylated chiral molecules has attracted great attention from the synthetic community. While transition-metal-catalyzed enantioselective diarylation of tethered alkenes has been employed to prepare important chiral cyclic compounds, the direct use of simple arenes as aryl precursors is still underdeveloped, probably due to the difficulties in the effective control of the reactivity, site-selectivity and/or enantioselectivity. Herein we report an asymmetric Pd/Ag dual metal catalytic system for the non-directed, site-and enantioselective domino Heck/intermolecular C–H functionalization of arenes.Mechanistic studies showed that Pd and Ag act in cooperation in the catalysis and the chiral bisphosphine ligand plays a bifunctional role, i.e., assisting the silver species in the cleavage of the aryl C–H bond, while inducing the enantioselectivity on direct complexation with palladium. This method provides an efficient approach to the corresponding chiral oxindoles with good enantiomeric excesses from a broad scope of arenes, including fluoroarenes, heteroarenes and several complex products derived from medicines or natural products.展开更多
In this paper, new delay-dependent stability criteria for asymptotic stability of neural networks with time-varying delays are derived. The stability conditions are represented in terms of linear matrix inequalities ...In this paper, new delay-dependent stability criteria for asymptotic stability of neural networks with time-varying delays are derived. The stability conditions are represented in terms of linear matrix inequalities (LMIs) by constructing new Lyapunov-Krasovskii functional. The proposed functional has an augmented quadratic form with states as well as the nonlinear function to consider the sector and the slope constraints. The less conservativeness of the proposed stability criteria can be guaranteed by using convex properties of the nonlinear function which satisfies the sector and slope bound. Numerical examples are presented to show the effectiveness of the proposed method.展开更多
This paper implements the method of estimating functions (EF) in the modelling and forecasting of financial returns volatility. This estimation approach incorporates higher order moments which are common in most finan...This paper implements the method of estimating functions (EF) in the modelling and forecasting of financial returns volatility. This estimation approach incorporates higher order moments which are common in most financial time series, into modelling, leading to a substantial gain of information and overall efficiency benefits. The two models considered in this paper provide a better in-sample-fit under the estimating functions approach relative to the traditional maximum likely-hood estimation (MLE) approach when fitted to empirical time series. On this ground, the EF approach is employed in the first order EGARCH and GJR-GARCH models to forecast the volatility of two market indices from the USA and Japanese stock markets. The loss functions, mean square error (MSE) and mean absolute error (MAE), have been utilized in evaluating the predictive ability of the EGARCH vis-à-vis the GJR-GARCH model.展开更多
Using the complex variable function method and the technique of conformal mapping, the anti-plane shear problem of an elliptic hole with asymmetric colfinear cracks in a one-dimensional hexagonal quasi-crystal is solv...Using the complex variable function method and the technique of conformal mapping, the anti-plane shear problem of an elliptic hole with asymmetric colfinear cracks in a one-dimensional hexagonal quasi-crystal is solved, and the exact analytic solutions of the stress intensity factors (SIFs) for mode Ⅲ problem are obtained. Under the limiting conditions, the present results reduce to the Griffith crack and many new results obtained as well, such as the circular hole with asymmetric collinear cracks, the elliptic hole with a straight crack, the mode T crack, the cross crack and so on. As far as the phonon field is concerned, these results, which play an important role in many practical and theoretical applications, are shown to be in good agreement with the classical results.展开更多
This paper investigates the issue of adaptive optimal tracking control for nonlinear systems with dynamic state constraints.An asymmetric time-varying integral barrier Lyapunov function(ATIBLF)based integral reinforce...This paper investigates the issue of adaptive optimal tracking control for nonlinear systems with dynamic state constraints.An asymmetric time-varying integral barrier Lyapunov function(ATIBLF)based integral reinforcement learning(IRL)control algorithm with an actor–critic structure is first proposed.The ATIBLF items are appropriately arranged in every step of the optimized backstepping control design to ensure that the dynamic full-state constraints are never violated.Thus,optimal virtual/actual control in every backstepping subsystem is decomposed with ATIBLF items and also with an adaptive optimized item.Meanwhile,neural networks are used to approximate the gradient value functions.According to the Lyapunov stability theorem,the boundedness of all signals of the closed-loop system is proved,and the proposed control scheme ensures that the system states are within predefined compact sets.Finally,the effectiveness of the proposed control approach is validated by simulations.展开更多
A fuzzy control algorithm of asymmetric fuzzy strategy is introduced for a servo-pneumatic position system. It can effectively solve the difficult problems of single rod low friction cylinders, which are mainly caused...A fuzzy control algorithm of asymmetric fuzzy strategy is introduced for a servo-pneumatic position system. It can effectively solve the difficult problems of single rod low friction cylinders, which are mainly caused by asymmetric structures and different friction characteristics in two directions. On the basis of this algorithm, a traditional PID control is used to improve dynamic performance. Furthermore, a new asymmetric fuzzy PID control with α factor is advanced to improve the self-adaptability and robustness of the system. Both the theoretical analyses and experimental results prove that, with this control strategy, the dynamic performance of the system can be greatly improved. The system using this control algorithm has strong robustness and it obtains desired overshoot and repeatability in both transient and steady-state responses.展开更多
The accurate DC system model is the key to fault analysis and harmonic calculation of AC/DC system. In this paper, a frequency domain analysis model of DC system is established, and based on it a unified fundamental f...The accurate DC system model is the key to fault analysis and harmonic calculation of AC/DC system. In this paper, a frequency domain analysis model of DC system is established, and based on it a unified fundamental frequency and harmonic iterative calculation method is proposed. The DC system model is derived considering the dynamic switching characteristic of converter and the steady-state response features of dc control system synchronously. And the proposed harmonic calculation method fully considers the AC/DC harmonic interaction and fault interaction under AC asymmetric fault condition. The method is used to the harmonic analysis and calculation of CIGRE HVDC system. Compared with those obtained by simulation using PSCAD/EMTDC software, the results show that the proposed model and method are accurate and effective, and provides the analysis basis of harmonic suppression, filter configuration and protection analysis in AC/DC system.展开更多
The natural dynamic characteristics of a circular cylindrical tube made of three-directional(3 D)functional graded material(FGM)based on the Timoshenko beam theory are investigated.Hamilton’s principle is utilized to...The natural dynamic characteristics of a circular cylindrical tube made of three-directional(3 D)functional graded material(FGM)based on the Timoshenko beam theory are investigated.Hamilton’s principle is utilized to derive the novel motion equations of the tube,considering the interactions among the longitudinal,transverse,and rotation deformations.By dint of the differential quadrature method(DQM),the governing equations are discretized to conduct the analysis of natural dynamic characteristics.The Ritz method,in conjunction with the finite element method(FEM),is introduced to verify the present results.It is found that the asymmetric modes in the tube are controlled by the 3 D FGM,which exhibit more complicated shapes compared with the unidirectional(1 D)and bi-directional(2 D)FGM cases.Numerical examples illustrate the effects of the axial,radial,and circumferential FGM indexes as well as the supported edges on the natural dynamic characteristics in detail.It is notable that the obtained results are beneficial for accurate design of smart structures composed from multi-directional FGM.展开更多
The total internal partition sums were calculated in the product approximation at temperatures up to 5000 K for the asymptotic asymmetric-top HO2 molecule. The calculations of the rotational partition function and the...The total internal partition sums were calculated in the product approximation at temperatures up to 5000 K for the asymptotic asymmetric-top HO2 molecule. The calculations of the rotational partition function and the vibrational partition function were carried out with the rigid-top model and in the harmonic oscillator approximation, respectively. Our values of the total internal partition sums are consistent with the data of HITRAN database with -0.14% at 296 K. Using the calculated partition functions, we have calculated the line intensities of υ2 band of HO2 at several high temperatures. The results showed that the calculated line intensities are in very good agreement with those of HITRAN database at temperatures up to 3000 K, which provides a strong support for the calculations of partition functions and line intensities at high temperatures. Then we have extended the calculation to higher temperatures. The simulated spectra of υ2 band of the asymptotic asymmetric-top HO2 molecule at 4000 and 5000 K are also obtained.展开更多
Sparrow criterion of resolution is used for assessment of the resolution of two object points of apodized optical systems under incoherent illumination of light. Semicircular arrays of circular aperture with discrete ...Sparrow criterion of resolution is used for assessment of the resolution of two object points of apodized optical systems under incoherent illumination of light. Semicircular arrays of circular aperture with discrete asymmetric apodization have suppressed side-lobes and a narrower central peak in the image plane termed as PSF good side on alternatively the right and left of the strong spectral point facilitates to detect the presence of weak spectral point in the vicinity of bright spectral point. The results of investigations on optimum discrete pupil function with semicircular arrays on the intensity distributions in the composite image of two object points with widely varying in their intensities under various degree of coherence of illumination have been studied. Sparrow resolution limits and the dip in central intensity as function of degree of coherence of the illumination (γ), intensity ratio (α), degree of asymmetric apodization (b) and number of discrete elements in semicircular array (n). The efficiency of aperture functions is discussed in terms of these parameters. Pupil function capabilities in redistribution of energy in composite image of two object points in close vicinity have been verified for different considerations. Current study has found an improvement in two-point resolution characteristics compared to their unapodized counter part. Fourier analytical properties of an optical system are presented for evaluation of this practical problem.展开更多
With the theory of complex functions, dynamic propagation problems concerning surfaces of asymmetrical mode Ⅲ crack subjected to moving loads are investigated. General representations of analytical solutions are obta...With the theory of complex functions, dynamic propagation problems concerning surfaces of asymmetrical mode Ⅲ crack subjected to moving loads are investigated. General representations of analytical solutions are obtained with self-similar functions. The problems can be easily converted into Riemann-Hilbert problems using this technique. Analytical solutions to stress, displacement and dynamic stress intensity factor under constant and unit-step moving loads on the surfaces of asymmetrical extension crack, respectively, are obtained. By applying these solutions, together with the superposition principle, solutions of discretionarily intricate problems can be found.展开更多
Total internal partition sums are calculated in the product approximation at temperatures up to 6000K for the asymptotic asymmetric-top SiO2 molecule. The rotational partition function and the vibrational partition fu...Total internal partition sums are calculated in the product approximation at temperatures up to 6000K for the asymptotic asymmetric-top SiO2 molecule. The rotational partition function and the vibrational partition function are calculated with the rigid-top model and in the harmonic oscillator approximation, respectively. Our values of the total internal partition sums are consistent with the calculated value in the Gaussian program within $-0.137$% at 296K. Using the calculated partition functions and the rotationless transition dipole moment squared as a constant, we calculate the line intensities of 001--000 band of SiO2 at normal, medium and high temperatures. Simulated spectra of the 001--000 band of the asymptotic asymmetric-top SiO2 molecule at 2000, 5000 and 6000K are also obtained.展开更多
This paper deals with the stability of Takagi-Sugeno fuzzy models with time delay. Using fuzzy weighting- dependent Lyapunov-Krasovskii functionals, new sufficient stability criteria are established in terms of Linear...This paper deals with the stability of Takagi-Sugeno fuzzy models with time delay. Using fuzzy weighting- dependent Lyapunov-Krasovskii functionals, new sufficient stability criteria are established in terms of Linear Matrix Inequality;hence the stability bound of upper bound delay time can be easily estimated. Finally, numeric simulations are given to validate the developed approach.展开更多
This paper derives some sufficient conditions for exponential stability for the equilibrium point by dividing the state variables of the system according to the characters of the neural networks. The new conditions ar...This paper derives some sufficient conditions for exponential stability for the equilibrium point by dividing the state variables of the system according to the characters of the neural networks. The new conditions are described by some blocks of the interconnection matrix. An example is given to demonstrate the effectiveness of the proposed theory.展开更多
In view of the exciting advancement on silicon–carbon bond-forming transformations achieved in the past decade,this review intends to show a unified illustration of the recent findings on enantioselective Si–H bond ...In view of the exciting advancement on silicon–carbon bond-forming transformations achieved in the past decade,this review intends to show a unified illustration of the recent findings on enantioselective Si–H bond functionalization aided by asymmetric catalysis.Accordingly,this review describes the enantioselective silicon–carbon bond-forming Si–H bond functionalization,focusing on the reactivity and stereoselectivity in catalytic asymmetric hydrosilylation,carbene Si–H insertion,C–H silylation,and Si–C bond-forming cross-coupling reactions that were achieved with high enantioselectivity in the presence of transitionmetal catalyst systems.This review highlights recent and representative examples of the enantioselective Si–H bond functionalization,discusses the origins of silicon-involving stereoselectivities,and evaluates the substrate scopes and limitations in these catalytic asymmetric Si–H bond functionalization reactions due to the special reactivity of different hydrosilanes.展开更多
A practical fixed-time adaptive fuzzy control strategy is investigated for uncertain nonlinear systems with time-varying asymmetric constraints and input quantization. To overcome the difficulties of designing control...A practical fixed-time adaptive fuzzy control strategy is investigated for uncertain nonlinear systems with time-varying asymmetric constraints and input quantization. To overcome the difficulties of designing controllers under the state constraints, a unified barrier function approach is employed to construct a coordinate transformation that maps the original constrained system to an equivalent unconstrained one, thus relaxing the time-varying asymmetric constraints upon system states and avoiding the feasibility check condition typically required in the traditional barrier Lyapunov function based control approach. Meanwhile, the “explosion of complexity” problem in the traditional backstepping approach arising from repeatedly derivatives of virtual controllers is solved by using the command filter method. It is verified via the fixed-time Lyapunov stability criterion that the system output can track a desired signal within a small error range in a predetermined time, and that all system states remain in the constraint range. Finally, two simulation examples are offered to demonstrate the effectiveness of the proposed strategy.展开更多
文摘In this work,phase and morphology-tuned MoO_(3) nanostructures are synthesized through a novel modified co-precipitation method,and their electrochemical properties are investigated.For the first time,such a simple surfactant-assisted synthesis process aided by minor temperature variations is reported which results in phase transition of the nanoparticles from h-MoO_(3) nano-rods to a-MoO_(3) nano-flakes.The nanostructures thus developed are highly porous and crystalline with significantly large specific surface area as compared to previous literature.The theoretical bandgap energy of the optimized sample calculated using Perdew-Zunger local density approximation(LDA) is in good agreement with the experimental findings.An overall structural,morphological,and surface-behavioural analysis predicts the electrochemical superiority in 2D a-MoO_(3).The cyclic voltammetry and galvano-potentiometry measurements of 2D a-MoO_(3) in the potential window of-0.6 V to +0.2 V present the highest pseudosupercapacitive response with a maximum specific capacitance of 829 F g^(-1)at 2 A g^(-1)as compared to h-MoO_(3) (452 F g^(-1)) and h@a-MoO_(3) (783 F g^(-1)).Thus,the MoO_(3) 2D nanostructures synthesized through our novel synthesis technique display excellent specific capacitance as compared to previous reported data.Additionally,a-MoO_(3) exhibits a galvanostatic charging-discharging cyclic stability of about 91%after 2000 cycles,indicating that it can serve as an excellent electrode material for supercapacitors.A solid-state asymmetric supercapacitor device is successfully constructed using a-MoO_(3) which can light up 4 red LEDs for 10 s.The specific energy density of the device reaches a maximum value of 36.3 W h kg^(-1)at the power density of 50 W kg^(-1).
文摘In this paper, a novel non-monotonic Lyapunov-Krasovskii functional approach is proposed to deal with the stability analysis and stabilization problem of linear discrete time-delay systems. This technique is utilized to relax the monotonic requirement of the Lyapunov-Krasovskii theorem. In this regard, the Lyapunov-Krasovskii functional is allowed to increase in a few steps, while being forced to be overall decreasing. As a result, it relays on a larger class of Lyapunov-Krasovskii functionals to provide stability of a state-delay system. To this end, using the non-monotonic Lyapunov-Krasovskii theorem, new sufficient conditions are derived regarding linear matrix inequalities(LMIs)to study the global asymptotic stability of state-delay systems.Moreover, new stabilization conditions are also proposed for time-delay systems in this article. Both simulation and experimental results on a p H neutralizing process are provided to demonstrate the efficacy of the proposed method.
基金supported by the National Key R&D Program of China (2021YFA1500100)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB0610000)+2 种基金the National Natural Science Foundation of China (92256303, 22171278, 21821002)the Shanghai Science and Technology Committee (23ZR1482400)the Natural Science Foundation of Ningbo (2023J034)。
文摘By virtue of the atom-and step-economy, utilization of simple arenes as a supplant of pre-prepared aryl metal species or aryl halides for the synthesis of arylated chiral molecules has attracted great attention from the synthetic community. While transition-metal-catalyzed enantioselective diarylation of tethered alkenes has been employed to prepare important chiral cyclic compounds, the direct use of simple arenes as aryl precursors is still underdeveloped, probably due to the difficulties in the effective control of the reactivity, site-selectivity and/or enantioselectivity. Herein we report an asymmetric Pd/Ag dual metal catalytic system for the non-directed, site-and enantioselective domino Heck/intermolecular C–H functionalization of arenes.Mechanistic studies showed that Pd and Ag act in cooperation in the catalysis and the chiral bisphosphine ligand plays a bifunctional role, i.e., assisting the silver species in the cleavage of the aryl C–H bond, while inducing the enantioselectivity on direct complexation with palladium. This method provides an efficient approach to the corresponding chiral oxindoles with good enantiomeric excesses from a broad scope of arenes, including fluoroarenes, heteroarenes and several complex products derived from medicines or natural products.
基金Project supported by the Daegu University Research Grant,2009
文摘In this paper, new delay-dependent stability criteria for asymptotic stability of neural networks with time-varying delays are derived. The stability conditions are represented in terms of linear matrix inequalities (LMIs) by constructing new Lyapunov-Krasovskii functional. The proposed functional has an augmented quadratic form with states as well as the nonlinear function to consider the sector and the slope constraints. The less conservativeness of the proposed stability criteria can be guaranteed by using convex properties of the nonlinear function which satisfies the sector and slope bound. Numerical examples are presented to show the effectiveness of the proposed method.
文摘This paper implements the method of estimating functions (EF) in the modelling and forecasting of financial returns volatility. This estimation approach incorporates higher order moments which are common in most financial time series, into modelling, leading to a substantial gain of information and overall efficiency benefits. The two models considered in this paper provide a better in-sample-fit under the estimating functions approach relative to the traditional maximum likely-hood estimation (MLE) approach when fitted to empirical time series. On this ground, the EF approach is employed in the first order EGARCH and GJR-GARCH models to forecast the volatility of two market indices from the USA and Japanese stock markets. The loss functions, mean square error (MSE) and mean absolute error (MAE), have been utilized in evaluating the predictive ability of the EGARCH vis-à-vis the GJR-GARCH model.
基金supported by the National Natural Science Foundation of China (Grant No 10761005)the Inner Mongolia Natural Science Foundation of China (Grant No 200607010104)
文摘Using the complex variable function method and the technique of conformal mapping, the anti-plane shear problem of an elliptic hole with asymmetric colfinear cracks in a one-dimensional hexagonal quasi-crystal is solved, and the exact analytic solutions of the stress intensity factors (SIFs) for mode Ⅲ problem are obtained. Under the limiting conditions, the present results reduce to the Griffith crack and many new results obtained as well, such as the circular hole with asymmetric collinear cracks, the elliptic hole with a straight crack, the mode T crack, the cross crack and so on. As far as the phonon field is concerned, these results, which play an important role in many practical and theoretical applications, are shown to be in good agreement with the classical results.
基金Project supported by the National Natural Science Foundation of China(Nos.62203392 and 62373329)the Natural Science Foundation of Zhejiang Province,China(No.LY23F030009)the Baima Lake Laboratory Joint Funds of the Zhejiang Provincial Natural Science Foundation of China(No.LBMHD24F030002)。
文摘This paper investigates the issue of adaptive optimal tracking control for nonlinear systems with dynamic state constraints.An asymmetric time-varying integral barrier Lyapunov function(ATIBLF)based integral reinforcement learning(IRL)control algorithm with an actor–critic structure is first proposed.The ATIBLF items are appropriately arranged in every step of the optimized backstepping control design to ensure that the dynamic full-state constraints are never violated.Thus,optimal virtual/actual control in every backstepping subsystem is decomposed with ATIBLF items and also with an adaptive optimized item.Meanwhile,neural networks are used to approximate the gradient value functions.According to the Lyapunov stability theorem,the boundedness of all signals of the closed-loop system is proved,and the proposed control scheme ensures that the system states are within predefined compact sets.Finally,the effectiveness of the proposed control approach is validated by simulations.
文摘A fuzzy control algorithm of asymmetric fuzzy strategy is introduced for a servo-pneumatic position system. It can effectively solve the difficult problems of single rod low friction cylinders, which are mainly caused by asymmetric structures and different friction characteristics in two directions. On the basis of this algorithm, a traditional PID control is used to improve dynamic performance. Furthermore, a new asymmetric fuzzy PID control with α factor is advanced to improve the self-adaptability and robustness of the system. Both the theoretical analyses and experimental results prove that, with this control strategy, the dynamic performance of the system can be greatly improved. The system using this control algorithm has strong robustness and it obtains desired overshoot and repeatability in both transient and steady-state responses.
文摘The accurate DC system model is the key to fault analysis and harmonic calculation of AC/DC system. In this paper, a frequency domain analysis model of DC system is established, and based on it a unified fundamental frequency and harmonic iterative calculation method is proposed. The DC system model is derived considering the dynamic switching characteristic of converter and the steady-state response features of dc control system synchronously. And the proposed harmonic calculation method fully considers the AC/DC harmonic interaction and fault interaction under AC asymmetric fault condition. The method is used to the harmonic analysis and calculation of CIGRE HVDC system. Compared with those obtained by simulation using PSCAD/EMTDC software, the results show that the proposed model and method are accurate and effective, and provides the analysis basis of harmonic suppression, filter configuration and protection analysis in AC/DC system.
基金Project supported by the National Natural Science Foundation of China(Nos.11902001 and12072221)the China Postdoctoral Science Foundation(No.2018M641643)the Anhui Provincial Natural Science Foundation of China(Nos.1908085QA13 and 1808085ME128)。
文摘The natural dynamic characteristics of a circular cylindrical tube made of three-directional(3 D)functional graded material(FGM)based on the Timoshenko beam theory are investigated.Hamilton’s principle is utilized to derive the novel motion equations of the tube,considering the interactions among the longitudinal,transverse,and rotation deformations.By dint of the differential quadrature method(DQM),the governing equations are discretized to conduct the analysis of natural dynamic characteristics.The Ritz method,in conjunction with the finite element method(FEM),is introduced to verify the present results.It is found that the asymmetric modes in the tube are controlled by the 3 D FGM,which exhibit more complicated shapes compared with the unidirectional(1 D)and bi-directional(2 D)FGM cases.Numerical examples illustrate the effects of the axial,radial,and circumferential FGM indexes as well as the supported edges on the natural dynamic characteristics in detail.It is notable that the obtained results are beneficial for accurate design of smart structures composed from multi-directional FGM.
基金Project supported by the Major Program for Basic Research of National Security, China (Grant No 5134202-04)the National Natural Science Foundation of China (Grant No 10574096)the Natural Science Foundation of the Bureau of Education of Guizhou Province, China (Grant No 2006204)
文摘The total internal partition sums were calculated in the product approximation at temperatures up to 5000 K for the asymptotic asymmetric-top HO2 molecule. The calculations of the rotational partition function and the vibrational partition function were carried out with the rigid-top model and in the harmonic oscillator approximation, respectively. Our values of the total internal partition sums are consistent with the data of HITRAN database with -0.14% at 296 K. Using the calculated partition functions, we have calculated the line intensities of υ2 band of HO2 at several high temperatures. The results showed that the calculated line intensities are in very good agreement with those of HITRAN database at temperatures up to 3000 K, which provides a strong support for the calculations of partition functions and line intensities at high temperatures. Then we have extended the calculation to higher temperatures. The simulated spectra of υ2 band of the asymptotic asymmetric-top HO2 molecule at 4000 and 5000 K are also obtained.
文摘Sparrow criterion of resolution is used for assessment of the resolution of two object points of apodized optical systems under incoherent illumination of light. Semicircular arrays of circular aperture with discrete asymmetric apodization have suppressed side-lobes and a narrower central peak in the image plane termed as PSF good side on alternatively the right and left of the strong spectral point facilitates to detect the presence of weak spectral point in the vicinity of bright spectral point. The results of investigations on optimum discrete pupil function with semicircular arrays on the intensity distributions in the composite image of two object points with widely varying in their intensities under various degree of coherence of illumination have been studied. Sparrow resolution limits and the dip in central intensity as function of degree of coherence of the illumination (γ), intensity ratio (α), degree of asymmetric apodization (b) and number of discrete elements in semicircular array (n). The efficiency of aperture functions is discussed in terms of these parameters. Pupil function capabilities in redistribution of energy in composite image of two object points in close vicinity have been verified for different considerations. Current study has found an improvement in two-point resolution characteristics compared to their unapodized counter part. Fourier analytical properties of an optical system are presented for evaluation of this practical problem.
基金the Post-Doctoral Science Foundation of China(No.2005038199)the Natural Science Foundation of Heilongjiang Province of China(No.ZJG04-08)
文摘With the theory of complex functions, dynamic propagation problems concerning surfaces of asymmetrical mode Ⅲ crack subjected to moving loads are investigated. General representations of analytical solutions are obtained with self-similar functions. The problems can be easily converted into Riemann-Hilbert problems using this technique. Analytical solutions to stress, displacement and dynamic stress intensity factor under constant and unit-step moving loads on the surfaces of asymmetrical extension crack, respectively, are obtained. By applying these solutions, together with the superposition principle, solutions of discretionarily intricate problems can be found.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10965002)the Scientific Research Program of the Education Bureau of Jiangxi Province,China (Grant No. 2007326)the Scientific Research Program of the Science and Technology Bureau of Jiangxi Province,China (Grant No. 200621)
文摘Total internal partition sums are calculated in the product approximation at temperatures up to 6000K for the asymptotic asymmetric-top SiO2 molecule. The rotational partition function and the vibrational partition function are calculated with the rigid-top model and in the harmonic oscillator approximation, respectively. Our values of the total internal partition sums are consistent with the calculated value in the Gaussian program within $-0.137$% at 296K. Using the calculated partition functions and the rotationless transition dipole moment squared as a constant, we calculate the line intensities of 001--000 band of SiO2 at normal, medium and high temperatures. Simulated spectra of the 001--000 band of the asymptotic asymmetric-top SiO2 molecule at 2000, 5000 and 6000K are also obtained.
文摘This paper deals with the stability of Takagi-Sugeno fuzzy models with time delay. Using fuzzy weighting- dependent Lyapunov-Krasovskii functionals, new sufficient stability criteria are established in terms of Linear Matrix Inequality;hence the stability bound of upper bound delay time can be easily estimated. Finally, numeric simulations are given to validate the developed approach.
文摘This paper derives some sufficient conditions for exponential stability for the equilibrium point by dividing the state variables of the system according to the characters of the neural networks. The new conditions are described by some blocks of the interconnection matrix. An example is given to demonstrate the effectiveness of the proposed theory.
基金supported by the National Natural Science Foundation of China(22072035)the Special Support Program for High-level Talents of Zhejiang Province(2021R51005)+2 种基金the“Ten-Thousand Talents Plan”of Hangzhou cityHangzhou Innovation Team(TD2020015)Zhejiang Provincial Natural Science Foundation of China(LY21B030007,LY22B020006)。
文摘In view of the exciting advancement on silicon–carbon bond-forming transformations achieved in the past decade,this review intends to show a unified illustration of the recent findings on enantioselective Si–H bond functionalization aided by asymmetric catalysis.Accordingly,this review describes the enantioselective silicon–carbon bond-forming Si–H bond functionalization,focusing on the reactivity and stereoselectivity in catalytic asymmetric hydrosilylation,carbene Si–H insertion,C–H silylation,and Si–C bond-forming cross-coupling reactions that were achieved with high enantioselectivity in the presence of transitionmetal catalyst systems.This review highlights recent and representative examples of the enantioselective Si–H bond functionalization,discusses the origins of silicon-involving stereoselectivities,and evaluates the substrate scopes and limitations in these catalytic asymmetric Si–H bond functionalization reactions due to the special reactivity of different hydrosilanes.
基金Project supported by Institutional Fund Projects(No.IFPIP:131-611-1443)。
文摘A practical fixed-time adaptive fuzzy control strategy is investigated for uncertain nonlinear systems with time-varying asymmetric constraints and input quantization. To overcome the difficulties of designing controllers under the state constraints, a unified barrier function approach is employed to construct a coordinate transformation that maps the original constrained system to an equivalent unconstrained one, thus relaxing the time-varying asymmetric constraints upon system states and avoiding the feasibility check condition typically required in the traditional barrier Lyapunov function based control approach. Meanwhile, the “explosion of complexity” problem in the traditional backstepping approach arising from repeatedly derivatives of virtual controllers is solved by using the command filter method. It is verified via the fixed-time Lyapunov stability criterion that the system output can track a desired signal within a small error range in a predetermined time, and that all system states remain in the constraint range. Finally, two simulation examples are offered to demonstrate the effectiveness of the proposed strategy.