The asymmetric carbenoid C–H insertion of 3-diazooxindoles into 1,4-cyclohexadiene has been accomplished in the presence of chiral bis(imidazoline) NCN pincer iridium(Ⅲ) complexes as the catalysts. With a catalyst l...The asymmetric carbenoid C–H insertion of 3-diazooxindoles into 1,4-cyclohexadiene has been accomplished in the presence of chiral bis(imidazoline) NCN pincer iridium(Ⅲ) complexes as the catalysts. With a catalyst loading of 0.5 mol%, the reactions proceeded smoothly at 0℃ to afford a variety of chiral 3-substituted oxindoles in good yields with moderate to excellent enantioselectivities(up to 99% ee). The protocol exhibits good functional group tolerance with respect to 3-diazooxindoles and is readily scaled up to 2 mmol scale without any loss in activity and enantioselectivity. Density functional theory(DFT)calculations have been performed to better understand the reaction mechanism and to explain the stereochemical outcome of the reactions.展开更多
基金supported by the National Natural Science Foundation of China (21002006,20452002)Special Program for Key Basic Research of the Ministry of Science and Technology,China (2004-973-36)~~
基金supported by a grant from the National Nat-ural Science Foundation of China(No.21472176).
文摘The asymmetric carbenoid C–H insertion of 3-diazooxindoles into 1,4-cyclohexadiene has been accomplished in the presence of chiral bis(imidazoline) NCN pincer iridium(Ⅲ) complexes as the catalysts. With a catalyst loading of 0.5 mol%, the reactions proceeded smoothly at 0℃ to afford a variety of chiral 3-substituted oxindoles in good yields with moderate to excellent enantioselectivities(up to 99% ee). The protocol exhibits good functional group tolerance with respect to 3-diazooxindoles and is readily scaled up to 2 mmol scale without any loss in activity and enantioselectivity. Density functional theory(DFT)calculations have been performed to better understand the reaction mechanism and to explain the stereochemical outcome of the reactions.