This paper introduces a joint nonlinearity and chromatic dispersion pre-compensation method for coherent optical orthogonal frequency-division multiplexing systems. The research results show that this method can reduc...This paper introduces a joint nonlinearity and chromatic dispersion pre-compensation method for coherent optical orthogonal frequency-division multiplexing systems. The research results show that this method can reduce the walk- off effect and can therefore equalize the nonlinear impairments effectively. Compared with the only other existing nonlinearity pre-compensation method, the joint nonlinearity and chromatic dispersion pre-compensation method is not only suitable for low-dispersion optical orthogonal frequency-division multiplexing system, but also effective for high- dispersion optical orthogonal frequency-division multiplexing transmission system with higher input power but without optical dispersion compensation. The suggested solution does not increase computation complexity compared with only nonlinearity pre-compensation method. For 40 Gbit/s coherent optical orthogonal frequency-division multiplexing 20 × 80 km standard single-mode fibre system, the suggested method can improve the nonlinear threshold (for Q 〉 10 dB) about 2.7, 1.2 and 1.0 dB, and the maximum Q factor about 1.2, 0.4 and 0.3 dB, for 2, 8 and 16 ps/(nm.km) dispersion coefficients.展开更多
Contrary to the other multi-carrier modulation systems, the coherent optical orthogonal frequency division multiplexing communication system with an offset quadrature amplitude modulation (CO-OFDM-OQAM) possesses inhe...Contrary to the other multi-carrier modulation systems, the coherent optical orthogonal frequency division multiplexing communication system with an offset quadrature amplitude modulation (CO-OFDM-OQAM) possesses inherent imaginary interference (IMI). This has an important impact on the channel estimation process. Currently, a variety of frequency-domain channel estimation methods have been proposed. However, there are various problems that still exist. For instance, in order to reduce the influence of IMI, it is necessary to insert more guard intervals between the training sequence and the payload, leading to the occupation of excessive spectrum resources. In order to address this problem, this work designs a high spectral efficient frequency-domain channel estimation method for the polarization-division-multiplexing CO-OFDM-OQAM systems. First, the working principle of the proposed method is described in detail. Then, its spectral efficiency, power peak-to-average ratio, and channel estimation performance are studied based on simulations. The simulation results show that the proposed method improves the spectral efficiency without worsening the power peak-to-average ratio. The channel estimation capability of this method is verified in three scenarios of long-distance transmissions, including back-to-back, 100 km, and 200 km transmissions. .展开更多
As one solution to implement the largecapacity space division multiplexing(SDM)transmission systems,the mode division multiplexing(MDM)has gained much attention recently.The vector mode(VM),which is the eigenmode of t...As one solution to implement the largecapacity space division multiplexing(SDM)transmission systems,the mode division multiplexing(MDM)has gained much attention recently.The vector mode(VM),which is the eigenmode of the optical fiber,has also been adopted to realize the optical communications including the transmission over free-space optical(FSO)and optical fiber links.Considering the concerns on the short-reach optical interconnects,the low cost and high integration technologies should be developed.Direct detection(DD)with higher-order modulation formats in combination of MDM technologies could offer an available trade-off in system performance and complexity.We review demonstrations of FSO and fiber high-speed data transmission based on the VM MDM(VMDM)technologies.The special VMs,cylindrical vector beams(CVB),have been generated by the q-plate(QP)and characterized accordingly.And then they were used to implement the VMDM transmission with direct-detection orthogonal frequency division multiplexing(DD-OFDM).These demonstrations show the potential of VMDM-DD-OFDM technology in the large-capacity short-reach transmission links.展开更多
Pilot data aided feed forward (PAFF) carrier recovery is essential for phase noise tracking in coherent optical receivers. This paper describes a new PAFF system based on new pilot arrangement and maximum likelihood...Pilot data aided feed forward (PAFF) carrier recovery is essential for phase noise tracking in coherent optical receivers. This paper describes a new PAFF system based on new pilot arrangement and maximum likelihood (ML) to estimate the phase jitter in coherent receiver- induced by local oscillator's lasers and sampling clock errors. Square M-ary quadrature amplitude modulation (M-QAM) (4, 16, 64, and 256) schemes were used. A detailed mathematical description of the method was presented. The system performance was evaluated through numerical simulations and compared to those with noisefree receiver (ideal receiver) and feed forward without ML. The simulation results show that PAFF performs near the expected ideal phase recovery. Results clearly suggest that ML significantly improves the tolerance of phase error variance. From bit error rate (BER) sensibility evaluation, it was clearly observed that the new estimation method performs better with a 4-QAM (or quadrature phase shift keying (QPSK)) format compared to three others square QAM schemes. Analog to digital converter (ADC) resolution effect on the system performance was analyzed in terms of Q-factor. Finite resolution effect on 4-QAM is negligible while it negatively affects the system performance when M increases.展开更多
Visible light communications(VLC)is considered as an effective supplement technology for next-generation(6G)communications due to its abundant spectrum,high power efficiency and easy deployment.Optical orthogonal freq...Visible light communications(VLC)is considered as an effective supplement technology for next-generation(6G)communications due to its abundant spectrum,high power efficiency and easy deployment.Optical orthogonal frequency division multiplexing(O-OFDM)is a common technology to obtain further promotion.In this paper,two typical O-OFDM schemes direct current biased O-OFDM(DCO-OFDM)and asymmetrically clipped O-OFDM(ACO-OFDM)are analyzed in terms of signal clipping at both transmitter and receiver under the constraints of maximum optical power and non-negative optical power.And effective electrical SNR models after signal clipping are proposed and verified by link simulation.Then a noise cancellation scheme is proposed based on received signal clipping and is proved to bring a significant gain for ACO-OFDM.By system simulation,we find that under a certain optical power limitation,most users can achieve above 4 Gbps in indoor scenario when modulation bandwidth of the light emit diode(LED)or laser diode(LD)is 1 GHz.Therefore,it can be expected that the throughput could reach tens Gbps when the LED/LD modulation bandwidth is increased and multiple LEDs/LDs are deployed.展开更多
100 G Ethernet is considered to become the next generation Ethernet standard for IP networks.Typical 100 Gb/s transmission systems and their performance are presented.Comparision and analysis for 100 Gb/s transmission...100 G Ethernet is considered to become the next generation Ethernet standard for IP networks.Typical 100 Gb/s transmission systems and their performance are presented.Comparision and analysis for 100 Gb/s transmission systems have been discussed.It is demonstrated that optical OFDM can be used in future 100 Gb/s/ch and long-haul system.展开更多
With the increasing requirements of the multicast services in the whole data traffic service, the optical multicast technology becomes a key technology supporting wide bandwidth and high speed multicasting communicati...With the increasing requirements of the multicast services in the whole data traffic service, the optical multicast technology becomes a key technology supporting wide bandwidth and high speed multicasting communication. The transmission efficiency, capacity and robustness of optical multicast network can be further improved by introducing network coding technology into optical multicast networks. Meanwhile, facing to demand of emerging rate-variable multi-granularity multicast service, a multi-path transmission scheme based on network coding for routing and spectrum allocation (RSA) is proposed. It can not only allocate spectrum resources effectively and flexibly for various-rate multicast traffic, but also balance the network load, improve network throughput and reduce transmission blocking rate. In this paper, RSA problem is decomposed into two subproblems, namely routing allocation based on network coding and spectrum allocation based on maximum spectrum first (MSF) strategy, which are solved sequentially. Simulation experiments are carried out to analyze transmission performance with proposed RSA scheme. The simulation results show that the proposed RSA mechanism can allocate spectrum resources efficiently and flexibly for multi-granularity multicast traffic. Compared with RSA schemes based on shortest path tree (SPT) and minimal spanning tree (MST), the proposed RSA scheme is more efficient for spectrum resource utilization and load balancing, and spectrum resource is saved more than 20%.展开更多
In this paper, we describe a novel technique based on the flipped-exponential (FE) Nyquist pulse method for reducing peak-to-average power ratio (PAPR) in an optical direct-detection orthogonal frequency-division ...In this paper, we describe a novel technique based on the flipped-exponential (FE) Nyquist pulse method for reducing peak-to-average power ratio (PAPR) in an optical direct-detection orthogonal frequency-division multiplexing (DD-QFDM) system, The technique involves proper selection of the FE Nyquist pulses for shaping the different subcarriers of the OFDM. We apply this technique to a DD-OFDM transmission system to significantly reduce PAPR. We also investigate the sensitivity of a received OFDM signal with strong nonlinearity in a standard single-mode fiber (SMF).展开更多
In this paper,we propose an EADO-OFDM(Enhanced Asymmetrically Clipped DC Biased Optical Orthogonal Frequency Division Multiplexing)method for IM/DD(Intensity-Modulated DirectDetection)optical systems,in which the AV-D...In this paper,we propose an EADO-OFDM(Enhanced Asymmetrically Clipped DC Biased Optical Orthogonal Frequency Division Multiplexing)method for IM/DD(Intensity-Modulated DirectDetection)optical systems,in which the AV-DCO-OFDM(Absolute Valued DC Biased Optical OFDM)symbols on the even subcarriers and ACO-OFDM(Asymmetrically Clipped Optical OFDM)symbols on the odd subcarriers are combined for simultaneous transmission.Moreover,we discuss the PDF(Probability Density Function)and electrical SNR(Signal to Noise Ratio)of the symbols,which are utilized to estimate the BER(Bit Error Ratio)performance and overall performance of EADO-OFDM.The Monte Carlo simulation results have validated the theoretical analysis and have also confirmed the EADO-OFDM is attractive considering the following benefits.Firstly,EADO-OFDM is more energy efficient compared to the power-efficient DCO-OFDM(DC Biased Optical OFDM),since the required DC bias is smaller when appropriate constellation size combinations are chosen.In addition,EADO-OFDM performs better than the conventional ADO-OFDM(Asymmetrically Clipped DC Biased Optical OFDM),because the absolute value operation causes no clipping distortion.展开更多
正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)信号具有较高的峰均功率比(Peak to Average Power Ratio,PAPR),不仅影响功率放大器(High Power Amplifier,HPA)的工作效率,而且HPA使得OFDM信号产生严重的非线性失真,...正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)信号具有较高的峰均功率比(Peak to Average Power Ratio,PAPR),不仅影响功率放大器(High Power Amplifier,HPA)的工作效率,而且HPA使得OFDM信号产生严重的非线性失真,导致系统的误比特率(Bite Error Rate,BER)增大.本文基于限幅和压缩感知(Compressive Sensing,CS)提出了改进的补偿算法,发送端采用限幅降低信号的PAPR,接收端首先采用改进的逆模型方式减小HPA引入的非线性失真,再采用CS抵消由限幅引入的信号失真.仿真表明,所提方法不仅明显降低了OFDM信号的PAPR,而且有效提高了系统的BER性能.展开更多
基金supported by the National High Technology Research and Development Program of China(Grant No.2009AA01A345)the National Basic Research Program of China(Grant No.2011CB302702)the National Natural Science Foundation of China(Grant No.60932004)
文摘This paper introduces a joint nonlinearity and chromatic dispersion pre-compensation method for coherent optical orthogonal frequency-division multiplexing systems. The research results show that this method can reduce the walk- off effect and can therefore equalize the nonlinear impairments effectively. Compared with the only other existing nonlinearity pre-compensation method, the joint nonlinearity and chromatic dispersion pre-compensation method is not only suitable for low-dispersion optical orthogonal frequency-division multiplexing system, but also effective for high- dispersion optical orthogonal frequency-division multiplexing transmission system with higher input power but without optical dispersion compensation. The suggested solution does not increase computation complexity compared with only nonlinearity pre-compensation method. For 40 Gbit/s coherent optical orthogonal frequency-division multiplexing 20 × 80 km standard single-mode fibre system, the suggested method can improve the nonlinear threshold (for Q 〉 10 dB) about 2.7, 1.2 and 1.0 dB, and the maximum Q factor about 1.2, 0.4 and 0.3 dB, for 2, 8 and 16 ps/(nm.km) dispersion coefficients.
文摘Contrary to the other multi-carrier modulation systems, the coherent optical orthogonal frequency division multiplexing communication system with an offset quadrature amplitude modulation (CO-OFDM-OQAM) possesses inherent imaginary interference (IMI). This has an important impact on the channel estimation process. Currently, a variety of frequency-domain channel estimation methods have been proposed. However, there are various problems that still exist. For instance, in order to reduce the influence of IMI, it is necessary to insert more guard intervals between the training sequence and the payload, leading to the occupation of excessive spectrum resources. In order to address this problem, this work designs a high spectral efficient frequency-domain channel estimation method for the polarization-division-multiplexing CO-OFDM-OQAM systems. First, the working principle of the proposed method is described in detail. Then, its spectral efficiency, power peak-to-average ratio, and channel estimation performance are studied based on simulations. The simulation results show that the proposed method improves the spectral efficiency without worsening the power peak-to-average ratio. The channel estimation capability of this method is verified in three scenarios of long-distance transmissions, including back-to-back, 100 km, and 200 km transmissions. .
基金the National High Technology 863 Research and Development of China(No.2015AA017102)the National Natural Science Foundation of China(NSFC)(Grant Nos.61575082,61435006,61525502,and 61490715)+2 种基金the Youth Science and Technology Innovation Talents of Guangdong(No.2015TQ01X606)Guangdong Provincial Natural Science Foundation(GDSF)(No.2015A030313328)Pearl River S&T Nova Program of Guangzhou(No.201710010051).
文摘As one solution to implement the largecapacity space division multiplexing(SDM)transmission systems,the mode division multiplexing(MDM)has gained much attention recently.The vector mode(VM),which is the eigenmode of the optical fiber,has also been adopted to realize the optical communications including the transmission over free-space optical(FSO)and optical fiber links.Considering the concerns on the short-reach optical interconnects,the low cost and high integration technologies should be developed.Direct detection(DD)with higher-order modulation formats in combination of MDM technologies could offer an available trade-off in system performance and complexity.We review demonstrations of FSO and fiber high-speed data transmission based on the VM MDM(VMDM)technologies.The special VMs,cylindrical vector beams(CVB),have been generated by the q-plate(QP)and characterized accordingly.And then they were used to implement the VMDM transmission with direct-detection orthogonal frequency division multiplexing(DD-OFDM).These demonstrations show the potential of VMDM-DD-OFDM technology in the large-capacity short-reach transmission links.
文摘Pilot data aided feed forward (PAFF) carrier recovery is essential for phase noise tracking in coherent optical receivers. This paper describes a new PAFF system based on new pilot arrangement and maximum likelihood (ML) to estimate the phase jitter in coherent receiver- induced by local oscillator's lasers and sampling clock errors. Square M-ary quadrature amplitude modulation (M-QAM) (4, 16, 64, and 256) schemes were used. A detailed mathematical description of the method was presented. The system performance was evaluated through numerical simulations and compared to those with noisefree receiver (ideal receiver) and feed forward without ML. The simulation results show that PAFF performs near the expected ideal phase recovery. Results clearly suggest that ML significantly improves the tolerance of phase error variance. From bit error rate (BER) sensibility evaluation, it was clearly observed that the new estimation method performs better with a 4-QAM (or quadrature phase shift keying (QPSK)) format compared to three others square QAM schemes. Analog to digital converter (ADC) resolution effect on the system performance was analyzed in terms of Q-factor. Finite resolution effect on 4-QAM is negligible while it negatively affects the system performance when M increases.
文摘Visible light communications(VLC)is considered as an effective supplement technology for next-generation(6G)communications due to its abundant spectrum,high power efficiency and easy deployment.Optical orthogonal frequency division multiplexing(O-OFDM)is a common technology to obtain further promotion.In this paper,two typical O-OFDM schemes direct current biased O-OFDM(DCO-OFDM)and asymmetrically clipped O-OFDM(ACO-OFDM)are analyzed in terms of signal clipping at both transmitter and receiver under the constraints of maximum optical power and non-negative optical power.And effective electrical SNR models after signal clipping are proposed and verified by link simulation.Then a noise cancellation scheme is proposed based on received signal clipping and is proved to bring a significant gain for ACO-OFDM.By system simulation,we find that under a certain optical power limitation,most users can achieve above 4 Gbps in indoor scenario when modulation bandwidth of the light emit diode(LED)or laser diode(LD)is 1 GHz.Therefore,it can be expected that the throughput could reach tens Gbps when the LED/LD modulation bandwidth is increased and multiple LEDs/LDs are deployed.
基金supported by NSFC(no60872035)Youthful foundation of UESTC JX0707Key Youthful foundation of UESTC JX0801
文摘100 G Ethernet is considered to become the next generation Ethernet standard for IP networks.Typical 100 Gb/s transmission systems and their performance are presented.Comparision and analysis for 100 Gb/s transmission systems have been discussed.It is demonstrated that optical OFDM can be used in future 100 Gb/s/ch and long-haul system.
文摘With the increasing requirements of the multicast services in the whole data traffic service, the optical multicast technology becomes a key technology supporting wide bandwidth and high speed multicasting communication. The transmission efficiency, capacity and robustness of optical multicast network can be further improved by introducing network coding technology into optical multicast networks. Meanwhile, facing to demand of emerging rate-variable multi-granularity multicast service, a multi-path transmission scheme based on network coding for routing and spectrum allocation (RSA) is proposed. It can not only allocate spectrum resources effectively and flexibly for various-rate multicast traffic, but also balance the network load, improve network throughput and reduce transmission blocking rate. In this paper, RSA problem is decomposed into two subproblems, namely routing allocation based on network coding and spectrum allocation based on maximum spectrum first (MSF) strategy, which are solved sequentially. Simulation experiments are carried out to analyze transmission performance with proposed RSA scheme. The simulation results show that the proposed RSA mechanism can allocate spectrum resources efficiently and flexibly for multi-granularity multicast traffic. Compared with RSA schemes based on shortest path tree (SPT) and minimal spanning tree (MST), the proposed RSA scheme is more efficient for spectrum resource utilization and load balancing, and spectrum resource is saved more than 20%.
基金supported by the National Science Foundation of China(Grant Nos.60977049)the National 863 High Tech Research and Development Program of china(Grant No.2009AA01Z220,2009AA01Z222)Program for Hunan Provincial Science and technology
文摘In this paper, we describe a novel technique based on the flipped-exponential (FE) Nyquist pulse method for reducing peak-to-average power ratio (PAPR) in an optical direct-detection orthogonal frequency-division multiplexing (DD-QFDM) system, The technique involves proper selection of the FE Nyquist pulses for shaping the different subcarriers of the OFDM. We apply this technique to a DD-OFDM transmission system to significantly reduce PAPR. We also investigate the sensitivity of a received OFDM signal with strong nonlinearity in a standard single-mode fiber (SMF).
基金supported in part by National Key Basic Research Program of China(No.2013CB329200)in part by Shenzhen Subject Arrangements(No.JCYJ20160331184124954)+4 种基金in part by Shenzhen Peacock Plan(No.1108170036003286)in part by Guangdong Science and Technology Planning Project(No.2014B010120001)in part by Shenzhen Fundamental Research Project(No.JCYJ20150401112337177)in part by Shenzhen Visible Light Communication System Key Laboratory(No.ZDSYS20140512114229398)in part by EPSRC Funded Projects(EP/N004558/1,EP/N023862/1).
文摘In this paper,we propose an EADO-OFDM(Enhanced Asymmetrically Clipped DC Biased Optical Orthogonal Frequency Division Multiplexing)method for IM/DD(Intensity-Modulated DirectDetection)optical systems,in which the AV-DCO-OFDM(Absolute Valued DC Biased Optical OFDM)symbols on the even subcarriers and ACO-OFDM(Asymmetrically Clipped Optical OFDM)symbols on the odd subcarriers are combined for simultaneous transmission.Moreover,we discuss the PDF(Probability Density Function)and electrical SNR(Signal to Noise Ratio)of the symbols,which are utilized to estimate the BER(Bit Error Ratio)performance and overall performance of EADO-OFDM.The Monte Carlo simulation results have validated the theoretical analysis and have also confirmed the EADO-OFDM is attractive considering the following benefits.Firstly,EADO-OFDM is more energy efficient compared to the power-efficient DCO-OFDM(DC Biased Optical OFDM),since the required DC bias is smaller when appropriate constellation size combinations are chosen.In addition,EADO-OFDM performs better than the conventional ADO-OFDM(Asymmetrically Clipped DC Biased Optical OFDM),because the absolute value operation causes no clipping distortion.
文摘正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)信号具有较高的峰均功率比(Peak to Average Power Ratio,PAPR),不仅影响功率放大器(High Power Amplifier,HPA)的工作效率,而且HPA使得OFDM信号产生严重的非线性失真,导致系统的误比特率(Bite Error Rate,BER)增大.本文基于限幅和压缩感知(Compressive Sensing,CS)提出了改进的补偿算法,发送端采用限幅降低信号的PAPR,接收端首先采用改进的逆模型方式减小HPA引入的非线性失真,再采用CS抵消由限幅引入的信号失真.仿真表明,所提方法不仅明显降低了OFDM信号的PAPR,而且有效提高了系统的BER性能.