The fabrication of multifunctional electronic devices based on the intriguing natures of organic semiconductors is crucial for organic electronics.Ultranarrow-bandgap materials are in urgent demand for fabricating hig...The fabrication of multifunctional electronic devices based on the intriguing natures of organic semiconductors is crucial for organic electronics.Ultranarrow-bandgap materials are in urgent demand for fabricating high-performance organic photovoltaic(OPV)cells and highly sensitive near-infrared organic photodetectors(OPDs).By combining alkoxy modification and an asymmetric strategy,three narrowbandgap electronic acceptors(BTP-4F,DO-4F,and QO-4F)were synthesized with finely tuned molecular electrostatic potential(ESP)distributions.Through the careful modulation of electronic configurations,the optical absorption onsets of DO-4F and QO-4F exceeded 1μm.The experimental and theoretical results suggest that the small ESP of QO-4F is beneficial for achieving a low nonradiative voltage loss,while the large ESP of BTP-4F can help obtain high exciton dissociation efficiency.By contrast,the asymmetric acceptor DO-4F with a moderate ESP possesses balanced voltage loss and exciton dissociation,yielding the best power conversion efficiency of 13.6%in the OPV cells.OPDs were also fabricated based on the combination of PBDB-T:DO-4F,and the as-fabricated device outputs a high shot-noise-limited specific detectivity of 3.05×10^(13) Jones at 850 nm,which is a very good result for near-infrared OPDs.This work is anticipated to provide a rational way of designing high-performance ultranarrow-bandgap organic semiconductors by modulating the molecular ESP.展开更多
We introduce an asymmetrical mirror design to a 140 GHz TE_(22,6) quasi-optical(QO) mode converter system to correct the asymmetry of the beam's field distribution caused by the Denisov launcher. By such optimiza...We introduce an asymmetrical mirror design to a 140 GHz TE_(22,6) quasi-optical(QO) mode converter system to correct the asymmetry of the beam's field distribution caused by the Denisov launcher. By such optimization, the output beam with better symmetrical distribution is obtained at the system's output window. Based on the calculated results,the QO mode converter system's performance is already satisfying without iterative phase correction. Scalar and vector correlation coefficients between the output beam and the fundamental Gaussian beam are respectively 98.4% and 93.0%,while the total power transmission efficiency of the converter system is 94.4%. The assistance of optical ray tracing to the design of such QO mode converters is introduced and discussed as well.展开更多
Due to its ultra-fast charge/discharge rate,long cyclic life span,and environmental benignity,aqueous supercapacitor(SC)is considered as a proper nextgeneration energy storage device.Unfortunately,limited by undesirab...Due to its ultra-fast charge/discharge rate,long cyclic life span,and environmental benignity,aqueous supercapacitor(SC)is considered as a proper nextgeneration energy storage device.Unfortunately,limited by undesirable water electrolysis and unreasonable electrode potential range,aqueous SC normally generates a narrow cell voltage,resulting in a low energy density.To address such challenge,enormous efforts have been made to construct high-voltage aqueous SCs.Despite these achievements,the systematic reviews about this field are still rare.To fill this knowledge gap,this review summarizes the recent advances about boosting the cell voltage of aqueous SCs.From the viewpoint of electrode,doping alkali cations,modulating the electrode mass ratio,and optimizing the surface charge density are regarded as three effective pathways to achieve this goal.However,adjusting the appropriate pH level,introducing redox mediators,and constructing“water-in-salt”electrolyte are other three universal routes from the electrolyte aspect.Furthermore,it is also effective to obtain the high-voltage aqueous SCs through asymmetric design,such as designing asymmetric SCs.The confronting challenges and future development tendency towards the high-voltage aqueous SCs are further discussed.展开更多
To simulate the actual flowfield at the exit of the supersonic/hypersonic inlet, a wind tunnel is designed to study the flow in the scramjet isolator under the asymmetric incoming flow. And compression fields in the i...To simulate the actual flowfield at the exit of the supersonic/hypersonic inlet, a wind tunnel is designed to study the flow in the scramjet isolator under the asymmetric incoming flow. And compression fields in the isolator are investigated using wall static and pitot pressure measurements. Three incoming Mach numbers are considered as 1.5, 1.8 and 2. Results show that the increase of the asymmetry of the flow at the isolator entrance leads to the increase of the shock train length in the isolator for a given pressure ratio. Based on the analysis of the flow asymmetry effect at the isolator entrance on the shock train length, a modified correlation is proposed to calculate the length of the shock train. Predicted results of the proposed correlation are in good agreement with the experimental data.展开更多
A novel embedded-type permanent magnetic motor for hybrid motorcycle, which employs asymmetric design of eccentric air-gap, is proposed in the paper. This special design of air-gap well conforms to the mono-directiona...A novel embedded-type permanent magnetic motor for hybrid motorcycle, which employs asymmetric design of eccentric air-gap, is proposed in the paper. This special design of air-gap well conforms to the mono-directional operation characteristic of motorcycle and effectively suppresses the distortion of air-gap magnetic field caused by armature reaction. Hence the torque ripple is reduced. A drive system consisting of the newly-designed Nd-Fe-B permanent magnet synchronous motor and parallel-MOSFET three-phase inverter for hybrid motorcycle propulsion is established. Wide-range speed operation is realized through a simple and novel control strategy. Computer simulation is described and experimental results given to verify the practicality of the proposed motor design and control strategy.展开更多
The purpose of the present article is to introduce a class of mixed two- and three-level extended designs obtained by adding some new runs to an existing mixed two- and three-level design. A formulation of wrap-around...The purpose of the present article is to introduce a class of mixed two- and three-level extended designs obtained by adding some new runs to an existing mixed two- and three-level design. A formulation of wrap-around L2-discrepancy for the extended designs is developed. As a benchmark of obtaining (nearly) uniform asymmetrical extended designs, a lower bound to the wrap-around L2- discrepancy for our proposed designs is established. Thorough numerical results are displayed, which provide further corroboration to the derived theoretical results.展开更多
基金the support from the National Natural Science Foundation of China(NSFC,21835006)the financial support from the NSFC(22075301 and 22122905)+2 种基金the Youth Innovation Promotion Association CAS(2018043)the Key Research Program of the Chinese Academy of Sciences,Grant NO.XDPB13-3supported by the Beijing National Laboratory for Molecular Sciences(BNLMS-CXXM-201903)。
文摘The fabrication of multifunctional electronic devices based on the intriguing natures of organic semiconductors is crucial for organic electronics.Ultranarrow-bandgap materials are in urgent demand for fabricating high-performance organic photovoltaic(OPV)cells and highly sensitive near-infrared organic photodetectors(OPDs).By combining alkoxy modification and an asymmetric strategy,three narrowbandgap electronic acceptors(BTP-4F,DO-4F,and QO-4F)were synthesized with finely tuned molecular electrostatic potential(ESP)distributions.Through the careful modulation of electronic configurations,the optical absorption onsets of DO-4F and QO-4F exceeded 1μm.The experimental and theoretical results suggest that the small ESP of QO-4F is beneficial for achieving a low nonradiative voltage loss,while the large ESP of BTP-4F can help obtain high exciton dissociation efficiency.By contrast,the asymmetric acceptor DO-4F with a moderate ESP possesses balanced voltage loss and exciton dissociation,yielding the best power conversion efficiency of 13.6%in the OPV cells.OPDs were also fabricated based on the combination of PBDB-T:DO-4F,and the as-fabricated device outputs a high shot-noise-limited specific detectivity of 3.05×10^(13) Jones at 850 nm,which is a very good result for near-infrared OPDs.This work is anticipated to provide a rational way of designing high-performance ultranarrow-bandgap organic semiconductors by modulating the molecular ESP.
基金Project supported by the National Natural Science Foundation of China(Grant No.61671032)
文摘We introduce an asymmetrical mirror design to a 140 GHz TE_(22,6) quasi-optical(QO) mode converter system to correct the asymmetry of the beam's field distribution caused by the Denisov launcher. By such optimization, the output beam with better symmetrical distribution is obtained at the system's output window. Based on the calculated results,the QO mode converter system's performance is already satisfying without iterative phase correction. Scalar and vector correlation coefficients between the output beam and the fundamental Gaussian beam are respectively 98.4% and 93.0%,while the total power transmission efficiency of the converter system is 94.4%. The assistance of optical ray tracing to the design of such QO mode converters is introduced and discussed as well.
基金financially supported by research grants from the Natural Science Foundation of China(51702032)Natural Science Foundation of Chongqing(cstc2018jcyjAX0375)+1 种基金Fundamental Research Funds for the Central Universities(2019CDXYDL0007)Key Innovation Project for Clinical Technology of the Second Affiliated Hospital of Army Medical University(2018JSLC0025).
文摘Due to its ultra-fast charge/discharge rate,long cyclic life span,and environmental benignity,aqueous supercapacitor(SC)is considered as a proper nextgeneration energy storage device.Unfortunately,limited by undesirable water electrolysis and unreasonable electrode potential range,aqueous SC normally generates a narrow cell voltage,resulting in a low energy density.To address such challenge,enormous efforts have been made to construct high-voltage aqueous SCs.Despite these achievements,the systematic reviews about this field are still rare.To fill this knowledge gap,this review summarizes the recent advances about boosting the cell voltage of aqueous SCs.From the viewpoint of electrode,doping alkali cations,modulating the electrode mass ratio,and optimizing the surface charge density are regarded as three effective pathways to achieve this goal.However,adjusting the appropriate pH level,introducing redox mediators,and constructing“water-in-salt”electrolyte are other three universal routes from the electrolyte aspect.Furthermore,it is also effective to obtain the high-voltage aqueous SCs through asymmetric design,such as designing asymmetric SCs.The confronting challenges and future development tendency towards the high-voltage aqueous SCs are further discussed.
文摘To simulate the actual flowfield at the exit of the supersonic/hypersonic inlet, a wind tunnel is designed to study the flow in the scramjet isolator under the asymmetric incoming flow. And compression fields in the isolator are investigated using wall static and pitot pressure measurements. Three incoming Mach numbers are considered as 1.5, 1.8 and 2. Results show that the increase of the asymmetry of the flow at the isolator entrance leads to the increase of the shock train length in the isolator for a given pressure ratio. Based on the analysis of the flow asymmetry effect at the isolator entrance on the shock train length, a modified correlation is proposed to calculate the length of the shock train. Predicted results of the proposed correlation are in good agreement with the experimental data.
文摘A novel embedded-type permanent magnetic motor for hybrid motorcycle, which employs asymmetric design of eccentric air-gap, is proposed in the paper. This special design of air-gap well conforms to the mono-directional operation characteristic of motorcycle and effectively suppresses the distortion of air-gap magnetic field caused by armature reaction. Hence the torque ripple is reduced. A drive system consisting of the newly-designed Nd-Fe-B permanent magnet synchronous motor and parallel-MOSFET three-phase inverter for hybrid motorcycle propulsion is established. Wide-range speed operation is realized through a simple and novel control strategy. Computer simulation is described and experimental results given to verify the practicality of the proposed motor design and control strategy.
基金supported by the National Natural Science Foundation of China under Grant Nos.11271147,11471135,11471136support of Excellent Doctoral Dissertation to Cultivate Project of Central China Normal University under Grant No.2017YBZZ057
文摘The purpose of the present article is to introduce a class of mixed two- and three-level extended designs obtained by adding some new runs to an existing mixed two- and three-level design. A formulation of wrap-around L2-discrepancy for the extended designs is developed. As a benchmark of obtaining (nearly) uniform asymmetrical extended designs, a lower bound to the wrap-around L2- discrepancy for our proposed designs is established. Thorough numerical results are displayed, which provide further corroboration to the derived theoretical results.