Classical theories explaining the evolution of cooperation often rely on the assumption that the involved players are symmetrically interacted.However,in reality almost all well-documented cooperation systems show tha...Classical theories explaining the evolution of cooperation often rely on the assumption that the involved players are symmetrically interacted.However,in reality almost all well-documented cooperation systems show that cooperative players are in fact asymmetrically interacted and that this dynamic may greatly affect the cooperative behavior of the involved players.Here,we developed several models based on the most well known spatial game of the Hawk-Dove game,while also considering the effects of asymmetric interaction.Such asymmetric games possess four kinds of strategies:cooperation or defection of strong player and cooperation or defection of weak player.Computer simulations showed that the probability of defection of the strong player decreases with decreasing the benefit to cost ratio,and that all kinds of strategy will be substituted by cooperation on behalf of the strong player if the benefit to cost ratio is sufficiently small.Moreover,weak players find it difficult to survive and the surviving weak players are mostly defectors,similar to the Boxed Pigs game.Interestingly,the patterns of kinds of strategies are chaotic or oscillate in some conditions with the related factors.展开更多
In this paper, we characterize the players’ behavior in the stock market by the repeated game model with asymmetric information. We show that the discount price process of stock is a martingale driven by Brownian mot...In this paper, we characterize the players’ behavior in the stock market by the repeated game model with asymmetric information. We show that the discount price process of stock is a martingale driven by Brownian motion, and give an endogenous explanation for the random fluctuation of stock price: the randomizations in the market is due to the randomizations in the strategy of the informed player which hopes to avoid revealing his private information. On this basis, through studying the corresponding option pricing problem furtherly, we can give the expression of function<em> φ</em>.展开更多
This paper focuses on the performance of equalizer zero-determinant(ZD)strategies in discounted repeated Stackelberg asymmetric games.In the leader-follower adversarial scenario,the strong Stackelberg equilibrium(SSE)...This paper focuses on the performance of equalizer zero-determinant(ZD)strategies in discounted repeated Stackelberg asymmetric games.In the leader-follower adversarial scenario,the strong Stackelberg equilibrium(SSE)deriving from the opponents’best response(BR),is technically the optimal strategy for the leader.However,computing an SSE strategy may be difficult since it needs to solve a mixed-integer program and has exponential complexity in the number of states.To this end,the authors propose an equalizer ZD strategy,which can unilaterally restrict the opponent’s expected utility.The authors first study the existence of an equalizer ZD strategy with one-to-one situations,and analyze an upper bound of its performance with the baseline SSE strategy.Then the authors turn to multi-player models,where there exists one player adopting an equalizer ZD strategy.The authors give bounds of the weighted sum of opponents’s utilities,and compare it with the SSE strategy.Finally,the authors give simulations on unmanned aerial vehicles(UAVs)and the moving target defense(MTD)to verify the effectiveness of the proposed approach.展开更多
In this paper, we study an asymmetric game that characterizes the intentions of players to adopt a vaccine. The game describes a decision-making process of two players differentiated by income level and perceived trea...In this paper, we study an asymmetric game that characterizes the intentions of players to adopt a vaccine. The game describes a decision-making process of two players differentiated by income level and perceived treatment cost, who consider a vaccination against an infectious disease. The process is a noncooperative game since their vaccination decision has a direct impact on vaccine coverage in the population. We introduce a replicator dynamics (RD) to investigate the players’ optimal strategy selections over time. The dynamics reveal the long-term stability of the unique Nash-Pareto equilibrium strategy of this game, which is an extension of the notion of an evolutionarily stable strategy pair for asymmetric games. This Nash-Pareto pair is dependent on perceived costs to each player type, on perceived loss upon getting infected, and on the probability of getting infected from an infected person. Last but not least, we introduce a payoff parameter that plays the role of cost-incentive towards vaccination. We use an optimal control problem associated with the RD system to show that the Nash-Pareto pair can be controlled to evolve towards vaccination strategies that lead to a higher overall expected vaccine coverage.展开更多
基金supported by the National Basic Research Program of China (2007CB411600)the National Natural Science Foundation of China (30670272,30770500,10961027,31270433 and 10761010)+2 种基金the Yunnan Natural Science Foundation (2009CD104)the State Key Laboratory of Genetic Resources and Evolution,Kunming Institute of Zoology,Chinese Academy of Sciences(GREKF09-02)the West Light Foundation of the Chinese Academy of Sciences and Special Fund for the Excellent Youth of the Chinese Academy of Sciences (KSCX2-EW-Q-9)
文摘Classical theories explaining the evolution of cooperation often rely on the assumption that the involved players are symmetrically interacted.However,in reality almost all well-documented cooperation systems show that cooperative players are in fact asymmetrically interacted and that this dynamic may greatly affect the cooperative behavior of the involved players.Here,we developed several models based on the most well known spatial game of the Hawk-Dove game,while also considering the effects of asymmetric interaction.Such asymmetric games possess four kinds of strategies:cooperation or defection of strong player and cooperation or defection of weak player.Computer simulations showed that the probability of defection of the strong player decreases with decreasing the benefit to cost ratio,and that all kinds of strategy will be substituted by cooperation on behalf of the strong player if the benefit to cost ratio is sufficiently small.Moreover,weak players find it difficult to survive and the surviving weak players are mostly defectors,similar to the Boxed Pigs game.Interestingly,the patterns of kinds of strategies are chaotic or oscillate in some conditions with the related factors.
文摘In this paper, we characterize the players’ behavior in the stock market by the repeated game model with asymmetric information. We show that the discount price process of stock is a martingale driven by Brownian motion, and give an endogenous explanation for the random fluctuation of stock price: the randomizations in the market is due to the randomizations in the strategy of the informed player which hopes to avoid revealing his private information. On this basis, through studying the corresponding option pricing problem furtherly, we can give the expression of function<em> φ</em>.
基金supported by the National Key Research and Development Program of China under Grant No.2022YFA1004700the National Natural Science Foundation of China under Grant No.62173250Shanghai Municipal Science and Technology Major Project under Grant No.2021SHZDZX0100.
文摘This paper focuses on the performance of equalizer zero-determinant(ZD)strategies in discounted repeated Stackelberg asymmetric games.In the leader-follower adversarial scenario,the strong Stackelberg equilibrium(SSE)deriving from the opponents’best response(BR),is technically the optimal strategy for the leader.However,computing an SSE strategy may be difficult since it needs to solve a mixed-integer program and has exponential complexity in the number of states.To this end,the authors propose an equalizer ZD strategy,which can unilaterally restrict the opponent’s expected utility.The authors first study the existence of an equalizer ZD strategy with one-to-one situations,and analyze an upper bound of its performance with the baseline SSE strategy.Then the authors turn to multi-player models,where there exists one player adopting an equalizer ZD strategy.The authors give bounds of the weighted sum of opponents’s utilities,and compare it with the SSE strategy.Finally,the authors give simulations on unmanned aerial vehicles(UAVs)and the moving target defense(MTD)to verify the effectiveness of the proposed approach.
文摘In this paper, we study an asymmetric game that characterizes the intentions of players to adopt a vaccine. The game describes a decision-making process of two players differentiated by income level and perceived treatment cost, who consider a vaccination against an infectious disease. The process is a noncooperative game since their vaccination decision has a direct impact on vaccine coverage in the population. We introduce a replicator dynamics (RD) to investigate the players’ optimal strategy selections over time. The dynamics reveal the long-term stability of the unique Nash-Pareto equilibrium strategy of this game, which is an extension of the notion of an evolutionarily stable strategy pair for asymmetric games. This Nash-Pareto pair is dependent on perceived costs to each player type, on perceived loss upon getting infected, and on the probability of getting infected from an infected person. Last but not least, we introduce a payoff parameter that plays the role of cost-incentive towards vaccination. We use an optimal control problem associated with the RD system to show that the Nash-Pareto pair can be controlled to evolve towards vaccination strategies that lead to a higher overall expected vaccine coverage.