This study investigates the dynamical behaviors of nearest neighbor asymmetric coupled systems in a confined space.First, the study derivative analytical stability and synchronization conditions for the asymmetrically...This study investigates the dynamical behaviors of nearest neighbor asymmetric coupled systems in a confined space.First, the study derivative analytical stability and synchronization conditions for the asymmetrically coupled system in an unconfined space, which are then validated through numerical simulations. Simulation results show that asymmetric coupling has a significant impact on synchronization conditions. Moreover, it is observed that irrespective of whether the system is confined, an increase in coupling asymmetry leads to a hastened synchronization pace. Additionally, the study examines the effects of boundaries on the system's collective behaviors via numerical experiments. The presence of boundaries ensures the system's stability and synchronization, and reducing these boundaries can expedite the synchronization process and amplify its effects. Finally, the study reveals that the system's output amplitude exhibits stochastic resonance as the confined boundary size increases.展开更多
In this paper,a multifunctional chiral metasurface is presented to achieve asymmetric transmission(AT)and linear-polarization conversion(LPC).The designed metasurface consists of a cross swords-like shape and two hole...In this paper,a multifunctional chiral metasurface is presented to achieve asymmetric transmission(AT)and linear-polarization conversion(LPC).The designed metasurface consists of a cross swords-like shape and two holes in the lower side of the unit cell.In the frequency band from 8.3 GHz to 10.4 GHz,AT is realized with more than 90%efficiency and the same chiral metasurface transforms linear polarized wave into its orthogonal counterpart with high efficiency.For LPC,the polarization conversion ratio(PCR)is greater than 95%.The proposed metasurface is stable against the incident angles of striking electromagnetic(EM)waves up to 60°for both operations of AT and LPC.展开更多
Polarization manipulation of light is of great importance because it could promote development of wireless communications,biosensing,and polarization imaging.In order to use natural light more efficiently,it is highly...Polarization manipulation of light is of great importance because it could promote development of wireless communications,biosensing,and polarization imaging.In order to use natural light more efficiently,it is highly demanded to design and fabricate high performance asymmetric polarization converters which could covert the natural light to one particular linearly polarized light with high efficiency.Traditionally,polarizers could be achieved by controllers with crystals and polymers exhibiting birefringence.However,the polarizers are bulky in size and the theoretical conversion efficiency of the polarizers is limited to 0.5 with unpolarized light incidence.In this paper,we propose a polarization converter which could preserve high transmission for one linearly polarized light and convert the orthogonal linearly polarized light to its cross-polarized with high transmittance based on a multi-layer chiral metasurface.Theoretical results show that normally incident y-polarized light preserves high transmittance for the wavelength range from 685 nm to 800 nm while the orthogonal normally incident x-polarized light is efficiently converted to the y-polarized light with high transmittance from 725 nm to 748 nm.Accordingly,for unpolarized light incidence,transmittance larger than 0.5 has been successfully achieved in a broadband wavelength range from 712 nm to 773 nm with a maximum transmittance of 0.58 at 732 nm.展开更多
The phenomenon of stochastic resonance (SR) in an asymmetric mono-stable system subject to two external periodic forces and multiplicative and additive noise is investigated. It is shown that the signal-to-noise rat...The phenomenon of stochastic resonance (SR) in an asymmetric mono-stable system subject to two external periodic forces and multiplicative and additive noise is investigated. It is shown that the signal-to-noise ratio (SNR) for the fundamental and higher harmonics is a non-monotonic function of the intensities of the multiplicative and additive noise, as well as of the system parameter. Moreover, the SNR for the fundamental harmonic decreases with the increase of the system asymmetry, while the SNR for the higher harmonics behaves non-monotonically as the system asymmetry varies.展开更多
The phenomenon of stochastic resonance is investigated in an asymmetric bistable system with coloured noises. The approximate Fokker Planck equation is derived based on the Novikov theorem and the Fox approach. By app...The phenomenon of stochastic resonance is investigated in an asymmetric bistable system with coloured noises. The approximate Fokker Planck equation is derived based on the Novikov theorem and the Fox approach. By applying the two-state theory, the expression of the signal-to-noise ratio is obtained in the adiabatic limit. The effects of the noise parameters on signal-to-ratio are discussed. It is found that the stochastic resonance phenomena appear in most cases and disappear in some special cases.展开更多
Based on adiabatic approximation theory,in this paper we study the asymmetric stochastic resonance system with time-delayed feedback driven by non-Gaussian colored noise.The analytical expressions of the mean first-pa...Based on adiabatic approximation theory,in this paper we study the asymmetric stochastic resonance system with time-delayed feedback driven by non-Gaussian colored noise.The analytical expressions of the mean first-passage time(MFPT)and output signal-to-noise ratio(SNR)are derived by using a path integral approach,unified colored-noise approximation(UCNA),and small delay approximation.The effects of time-delayed feedback and non-Gaussian colored noise on the output SNR are analyzed.Moreover,three types of asymmetric potential function characteristics are thoroughly discussed.And they are well-depth asymmetry(DASR),well-width asymmetry(WASR),and synchronous action of welldepth and well-width asymmetry(DWASR),respectively.The conclusion of this paper is that the time-delayed feedback can suppress SR,however,the non-Gaussian noise deviation parameter has the opposite effect.Moreover,the correlation time plays a significant role in improving SNR,and the SNR of asymmetric stochastic resonance is higher than that of symmetric stochastic resonance.Our experiments demonstrate that the appropriate parameters can make the asymmetric stochastic resonance perform better to detect weak signals than the symmetric stochastic resonance,in which no matter whether these signals have low frequency or high frequency,accompanied by strong or weak noise.展开更多
The stochastic resonance phenomenon in a harmonic oscillator with fluctuating intrinsic frequency by asymmetric dichotomous noise is investigated in this paper. By using the random average method and Shapiro- Loginov ...The stochastic resonance phenomenon in a harmonic oscillator with fluctuating intrinsic frequency by asymmetric dichotomous noise is investigated in this paper. By using the random average method and Shapiro- Loginov formula, the exact solution of the average output amplitude gain (OAG) is obtained. Numerical results show that OAG depends non-monotonically on the noise characteristics: intensity, correlation time and asymmetry. The maximum OAG can be achieved by tuning the noise asymmetry and or the noise correlation time.展开更多
A tunable infrared plasmonic polarization filter is proposed and investigated in this paper. The filter is based on the sandwich absorption structure which consists of three layers. The top layer is an array of asymme...A tunable infrared plasmonic polarization filter is proposed and investigated in this paper. The filter is based on the sandwich absorption structure which consists of three layers. The top layer is an array of asymmetrical cross resonator. The middle and bottom layers are dielectric spacer and metal film respectively. By absorbing specific wavelength of the incident light perfectly, the reflection spectrum of the structure shows filter performance. The calculated results show that the absorption wavelength is strongly dependent on the length of branch of the asymmetrical cross resonator which is parallel to the light polarization and independent of the length of the vertical one. Therefore, the asymmetrical cross resonator filter structure opens the way for freely tuning the filtering wavelength for a different light polarization. We can fix a resonant wavelength (absorption wavelength) corresponding to one polarization and change the resonant wavelength for the other polarization by adjusting the corresponding branch length of the asymmetrical cross resonator, or change the two resonant wavelengths of both two polarizations at the same time.展开更多
A high-sensitivity plasmonic refractive-index sensor based on the asymmetrical coupling of two metal-insulator- metal waveguides with a nanodisk resonator is proposed and simulated in the finite-difference time domain...A high-sensitivity plasmonic refractive-index sensor based on the asymmetrical coupling of two metal-insulator- metal waveguides with a nanodisk resonator is proposed and simulated in the finite-difference time domain. Both analytic and simulated results show that the resonance wavelengths of the sensor have an approximate linear relationship with the refractive index of the materials which are filled into the slit waveguides and the disk- shaped resonator. The working mechanism of this sensor is exactly due to the linear relationship, based on which tile refractive index of the materials unknown can be obtained from the detection of the resonance wavelength. The measurement sensitivity can reach as high as 6.45 × 10-7, which is nearly five times higher than the results reported in the recent literature [Opt. Commun. 300 (2013) 265]. With an optimum design, the sensing value can be further improved, and it can be widely applied into the biological sensing. Tile sensor working for temperature sensing is also analyzed.展开更多
目的 探讨非对称回波最小二乘估算法迭代水脂分离序列(iterative decomposition of water and fat with echo asymmetrical and least-squares estimation quantitation sequence, IDEAL-IQ)来源的R2^(*)值在乳腺良恶性肿瘤鉴别诊断中...目的 探讨非对称回波最小二乘估算法迭代水脂分离序列(iterative decomposition of water and fat with echo asymmetrical and least-squares estimation quantitation sequence, IDEAL-IQ)来源的R2^(*)值在乳腺良恶性肿瘤鉴别诊断中的价值,并与传统多回波T2^(*)梯度回波(gradient recalled echo, GRE)序列来源的R2^(*)值进行比较。材料与方法 回顾性分析2021年9月至2023年10月在中国医科大学附属第一医院连续收治的42名患者的50个良性肿瘤病灶,在本院影像归档和通信系统(picture archiving and communication systems, PACS)中使用倾向性评分匹配方法匹配肿瘤所在最大层面的最长径,按1∶3的比例纳入150名患者的150个恶性肿瘤病灶。将恶性肿瘤根据预后因子[雌激素受体(estrogen receptor, ER)、孕激素受体(progesterone receptor, PR)以及人表皮生长因子受体2(human epidermal growth factor receptor 2, HER-2)]的阳性/阴性表达情况进行分组。所有患者均接受包含IDEAL-IQ和多回波T2*GRE序列的多参数MRI,测量以下定量参数:IDEAL-IQ序列R2^(*)值(R2^(*)IDEAL)、多回波T2*GRE序列R2^(*)值(R2^(*)GRE)、表观扩散系数(apparent diffusion coefficient, ADC)及肿瘤长径。根据原始资料类型的不同,分别利用单因素分析(独立样本t检验、Mann-Whitney U检验等方法)对比分析各参数的差异。采用Spearman相关性分析R2^(*)IDEAL与R2^(*)GRE及二者与ADC的相关性。采用配对样本t检验比较R2^(*)IDEAL与R2^(*)GRE的差异。采用logistic回归分析建立联合诊断模型,并使用受试者工作特征(receiver operating characteristic, ROC)曲线及曲线下面积(area under the curve,AUC)分析单独及联合参数鉴别乳腺肿瘤良恶性的效能。结果 相关性分析显示乳腺肿瘤患者的R2^(*)IDEAL与R2^(*)GRE呈中度相关(r=0.763,P<0.001),二者与ADC值均呈负性弱相关[r=-0.300(R2^(*)IDEAL),-0.306(R2^(*)GRE),P<0.001]。良性组与恶性组中,R2^(*)IDEAL与R2^(*)GRE均呈中度相关(r=0.745、0.680,P<0.001),二者与ADC均无相关性。两种序列所得的R2^(*)值差异有统计学意义(P<0.001)。R2^(*)IDEAL在良恶性组间差异有统计学意义(P<0.001),管腔HER-2阴性型R2^(*)值最高。对于单一参数,ADC值鉴别良恶性的AUC最高(0.857);对于联合参数,R2^(*)IDEAL+ADC鉴别良性组与管腔阴性组的AUC最高(0.927);差异均有统计学意义(P<0.05)。结论 IDEAL-IQ序列生成的R2^(*)值可用于区分良恶性乳腺肿块,可能成为除ADC外辅助乳腺肿瘤良恶性鉴别的又一无需对比剂参数。展开更多
This paper investigates the stochastic resonance in a monostable system driven by square-wave signal, asymmetric dichotomous noise as well as by multiplicative and additive white noise. By the use of the properties of...This paper investigates the stochastic resonance in a monostable system driven by square-wave signal, asymmetric dichotomous noise as well as by multiplicative and additive white noise. By the use of the properties of the dichotomous noise, it obtains the expressions of the signal-to-noise ratio under the adiabatic approximation condition. It finds that the signal-to-noise ratio is a non-monotonic function of the asymmetry of the dichotomous noise, and which varies non- monotonously with the intensity of the multiplicative and additive noise as well as the system parameters. Moreover, the signal-to-noise ratio depends on the correlation rate and intensity of the dichotomous noise.展开更多
By the method of the stochastic energetics,we investigate the stochastic resonance (SR) phenomenon of anoverdamped Brown particle in an asymmetric bistable potential,driven by external periodical signal and multiplica...By the method of the stochastic energetics,we investigate the stochastic resonance (SR) phenomenon of anoverdamped Brown particle in an asymmetric bistable potential,driven by external periodical signal and multiplicativenoise.The expressions have been obtained for the quasi-steady-state probability distribution function.It is found thatthe input energy (IE) pumped into the system by the external driving shows an SR-like behavior as a function of thenoise strength,whereas the IE turns to be a monotonic function of the correlation time of the noise.The effect ofpotential asymmetry is also studied on SR and IE.展开更多
A polarization-insensitive, square split-ring resonator(SSRR) is simulated and experimented. By investigating the influence of the asymmetrical arm width in typical SSRRs, we find that the variation of the arm width...A polarization-insensitive, square split-ring resonator(SSRR) is simulated and experimented. By investigating the influence of the asymmetrical arm width in typical SSRRs, we find that the variation of the arm width enables a blue shift of the resonance frequency for the 0° polarized wave and a red shift of the resonance frequency for the 90° polarized wave. Thus, the resonance frequency for the 0° polarized wave and the resonance frequency for the 90° polarized wave will be identical by asymmetrically adjusting the arm width of the SSRR. Two modified, split-ring resonators(MSRRs) that are insensitive to the polarization with asymmetrical arm widths are designed, fabricated, and tested. Excellent agreement between the simulations and experiments for the MSRRs demonstrates the polarization insensitivity with asymmetrical arm widths. This work opens new opportunities for the investigation of polarization-insensitive, split-ring resonator metamaterials and will broaden the applications of split-ring resonators in various terahertz devices.展开更多
This paper investigates the parameter-induced stochastic resonance using experimental methods in an over-damped random linear system with asymmetric dichotomous noise. Non-monotonic dependence of signal-to-noise ratio...This paper investigates the parameter-induced stochastic resonance using experimental methods in an over-damped random linear system with asymmetric dichotomous noise. Non-monotonic dependence of signal-to-noise ratio on the system parameter is observed. Several potential applications of parameter-induced stochastic resonance are given in circuits.展开更多
The partial potential energy surface was constructed by ab initio method [QCISD(T)/6- 311++G(2df,2pd)]for F+CH4→HF+CH3 reaction system. It not only explained the reaction mechanism brought forward by Diego Tr...The partial potential energy surface was constructed by ab initio method [QCISD(T)/6- 311++G(2df,2pd)]for F+CH4→HF+CH3 reaction system. It not only explained the reaction mechanism brought forward by Diego Troya by means of quasiclassical trajectory (QCT) but also successfully validated Kopin Liu's experimental phenomena about the existence of the reactive resonance. The lifetime of the scattering resonance state was about 0.07 ps. All these were in agreement with the experiments.展开更多
基金Project supported by the Natural Science Foundation of Shandong Province of China for the Youth (Grant No. ZR2023QA102)。
文摘This study investigates the dynamical behaviors of nearest neighbor asymmetric coupled systems in a confined space.First, the study derivative analytical stability and synchronization conditions for the asymmetrically coupled system in an unconfined space, which are then validated through numerical simulations. Simulation results show that asymmetric coupling has a significant impact on synchronization conditions. Moreover, it is observed that irrespective of whether the system is confined, an increase in coupling asymmetry leads to a hastened synchronization pace. Additionally, the study examines the effects of boundaries on the system's collective behaviors via numerical experiments. The presence of boundaries ensures the system's stability and synchronization, and reducing these boundaries can expedite the synchronization process and amplify its effects. Finally, the study reveals that the system's output amplitude exhibits stochastic resonance as the confined boundary size increases.
文摘In this paper,a multifunctional chiral metasurface is presented to achieve asymmetric transmission(AT)and linear-polarization conversion(LPC).The designed metasurface consists of a cross swords-like shape and two holes in the lower side of the unit cell.In the frequency band from 8.3 GHz to 10.4 GHz,AT is realized with more than 90%efficiency and the same chiral metasurface transforms linear polarized wave into its orthogonal counterpart with high efficiency.For LPC,the polarization conversion ratio(PCR)is greater than 95%.The proposed metasurface is stable against the incident angles of striking electromagnetic(EM)waves up to 60°for both operations of AT and LPC.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62075173 and 12274478)the National Key Research and Development Program of China(Grant Nos.2021YFB2800302 and 2021YFB2800604).
文摘Polarization manipulation of light is of great importance because it could promote development of wireless communications,biosensing,and polarization imaging.In order to use natural light more efficiently,it is highly demanded to design and fabricate high performance asymmetric polarization converters which could covert the natural light to one particular linearly polarized light with high efficiency.Traditionally,polarizers could be achieved by controllers with crystals and polymers exhibiting birefringence.However,the polarizers are bulky in size and the theoretical conversion efficiency of the polarizers is limited to 0.5 with unpolarized light incidence.In this paper,we propose a polarization converter which could preserve high transmission for one linearly polarized light and convert the orthogonal linearly polarized light to its cross-polarized with high transmittance based on a multi-layer chiral metasurface.Theoretical results show that normally incident y-polarized light preserves high transmittance for the wavelength range from 685 nm to 800 nm while the orthogonal normally incident x-polarized light is efficiently converted to the y-polarized light with high transmittance from 725 nm to 748 nm.Accordingly,for unpolarized light incidence,transmittance larger than 0.5 has been successfully achieved in a broadband wavelength range from 712 nm to 773 nm with a maximum transmittance of 0.58 at 732 nm.
基金supported by the Doctor Foundation of SWUST of China under Grant No.08ZX7108
文摘The phenomenon of stochastic resonance (SR) in an asymmetric mono-stable system subject to two external periodic forces and multiplicative and additive noise is investigated. It is shown that the signal-to-noise ratio (SNR) for the fundamental and higher harmonics is a non-monotonic function of the intensities of the multiplicative and additive noise, as well as of the system parameter. Moreover, the SNR for the fundamental harmonic decreases with the increase of the system asymmetry, while the SNR for the higher harmonics behaves non-monotonically as the system asymmetry varies.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10672074)
文摘The phenomenon of stochastic resonance is investigated in an asymmetric bistable system with coloured noises. The approximate Fokker Planck equation is derived based on the Novikov theorem and the Fox approach. By applying the two-state theory, the expression of the signal-to-noise ratio is obtained in the adiabatic limit. The effects of the noise parameters on signal-to-ratio are discussed. It is found that the stochastic resonance phenomena appear in most cases and disappear in some special cases.
基金Project supported by the National Natural Science Foundation of China(Grant No.60551002)the Natural Science Foundation of Hunan Province,China(Grant No.2018JJ3680).
文摘Based on adiabatic approximation theory,in this paper we study the asymmetric stochastic resonance system with time-delayed feedback driven by non-Gaussian colored noise.The analytical expressions of the mean first-passage time(MFPT)and output signal-to-noise ratio(SNR)are derived by using a path integral approach,unified colored-noise approximation(UCNA),and small delay approximation.The effects of time-delayed feedback and non-Gaussian colored noise on the output SNR are analyzed.Moreover,three types of asymmetric potential function characteristics are thoroughly discussed.And they are well-depth asymmetry(DASR),well-width asymmetry(WASR),and synchronous action of welldepth and well-width asymmetry(DWASR),respectively.The conclusion of this paper is that the time-delayed feedback can suppress SR,however,the non-Gaussian noise deviation parameter has the opposite effect.Moreover,the correlation time plays a significant role in improving SNR,and the SNR of asymmetric stochastic resonance is higher than that of symmetric stochastic resonance.Our experiments demonstrate that the appropriate parameters can make the asymmetric stochastic resonance perform better to detect weak signals than the symmetric stochastic resonance,in which no matter whether these signals have low frequency or high frequency,accompanied by strong or weak noise.
文摘The stochastic resonance phenomenon in a harmonic oscillator with fluctuating intrinsic frequency by asymmetric dichotomous noise is investigated in this paper. By using the random average method and Shapiro- Loginov formula, the exact solution of the average output amplitude gain (OAG) is obtained. Numerical results show that OAG depends non-monotonically on the noise characteristics: intensity, correlation time and asymmetry. The maximum OAG can be achieved by tuning the noise asymmetry and or the noise correlation time.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61178089 and 51277091)the Natural Science Foundation of Fujian Province,China(Grant No.2013J05095)
文摘A tunable infrared plasmonic polarization filter is proposed and investigated in this paper. The filter is based on the sandwich absorption structure which consists of three layers. The top layer is an array of asymmetrical cross resonator. The middle and bottom layers are dielectric spacer and metal film respectively. By absorbing specific wavelength of the incident light perfectly, the reflection spectrum of the structure shows filter performance. The calculated results show that the absorption wavelength is strongly dependent on the length of branch of the asymmetrical cross resonator which is parallel to the light polarization and independent of the length of the vertical one. Therefore, the asymmetrical cross resonator filter structure opens the way for freely tuning the filtering wavelength for a different light polarization. We can fix a resonant wavelength (absorption wavelength) corresponding to one polarization and change the resonant wavelength for the other polarization by adjusting the corresponding branch length of the asymmetrical cross resonator, or change the two resonant wavelengths of both two polarizations at the same time.
基金Supported by the National Natural Science Foundation of China under Grant No 61275059
文摘A high-sensitivity plasmonic refractive-index sensor based on the asymmetrical coupling of two metal-insulator- metal waveguides with a nanodisk resonator is proposed and simulated in the finite-difference time domain. Both analytic and simulated results show that the resonance wavelengths of the sensor have an approximate linear relationship with the refractive index of the materials which are filled into the slit waveguides and the disk- shaped resonator. The working mechanism of this sensor is exactly due to the linear relationship, based on which tile refractive index of the materials unknown can be obtained from the detection of the resonance wavelength. The measurement sensitivity can reach as high as 6.45 × 10-7, which is nearly five times higher than the results reported in the recent literature [Opt. Commun. 300 (2013) 265]. With an optimum design, the sensing value can be further improved, and it can be widely applied into the biological sensing. Tile sensor working for temperature sensing is also analyzed.
基金Project supported by the Doctorial Foundation of Southwest University of Science and Technology of China(Grant No.08zx7108)
文摘This paper investigates the stochastic resonance in a monostable system driven by square-wave signal, asymmetric dichotomous noise as well as by multiplicative and additive white noise. By the use of the properties of the dichotomous noise, it obtains the expressions of the signal-to-noise ratio under the adiabatic approximation condition. It finds that the signal-to-noise ratio is a non-monotonic function of the asymmetry of the dichotomous noise, and which varies non- monotonously with the intensity of the multiplicative and additive noise as well as the system parameters. Moreover, the signal-to-noise ratio depends on the correlation rate and intensity of the dichotomous noise.
基金The project supported by Doctor Foundation of Panzhihua University under Grant No.B2006-1
文摘By the method of the stochastic energetics,we investigate the stochastic resonance (SR) phenomenon of anoverdamped Brown particle in an asymmetric bistable potential,driven by external periodical signal and multiplicativenoise.The expressions have been obtained for the quasi-steady-state probability distribution function.It is found thatthe input energy (IE) pumped into the system by the external driving shows an SR-like behavior as a function of thenoise strength,whereas the IE turns to be a monotonic function of the correlation time of the noise.The effect ofpotential asymmetry is also studied on SR and IE.
基金supported by the National High Technology Research and Development Program of China (No. 2011AA010204)the National Natural Science Foundation of China (Nos. 91438118 and 61370011)the Fundamental Research Funds for the Central Universities of China (No. ZYGX2014J037)
文摘A polarization-insensitive, square split-ring resonator(SSRR) is simulated and experimented. By investigating the influence of the asymmetrical arm width in typical SSRRs, we find that the variation of the arm width enables a blue shift of the resonance frequency for the 0° polarized wave and a red shift of the resonance frequency for the 90° polarized wave. Thus, the resonance frequency for the 0° polarized wave and the resonance frequency for the 90° polarized wave will be identical by asymmetrically adjusting the arm width of the SSRR. Two modified, split-ring resonators(MSRRs) that are insensitive to the polarization with asymmetrical arm widths are designed, fabricated, and tested. Excellent agreement between the simulations and experiments for the MSRRs demonstrates the polarization insensitivity with asymmetrical arm widths. This work opens new opportunities for the investigation of polarization-insensitive, split-ring resonator metamaterials and will broaden the applications of split-ring resonators in various terahertz devices.
文摘This paper investigates the parameter-induced stochastic resonance using experimental methods in an over-damped random linear system with asymmetric dichotomous noise. Non-monotonic dependence of signal-to-noise ratio on the system parameter is observed. Several potential applications of parameter-induced stochastic resonance are given in circuits.
基金the support of the Grant from the National Natural Science Foundation of China No.20573064 Ph.D.Special Research Foundation of Chinese Education Department.
文摘The partial potential energy surface was constructed by ab initio method [QCISD(T)/6- 311++G(2df,2pd)]for F+CH4→HF+CH3 reaction system. It not only explained the reaction mechanism brought forward by Diego Troya by means of quasiclassical trajectory (QCT) but also successfully validated Kopin Liu's experimental phenomena about the existence of the reactive resonance. The lifetime of the scattering resonance state was about 0.07 ps. All these were in agreement with the experiments.