期刊文献+
共找到44篇文章
< 1 2 3 >
每页显示 20 50 100
12.6μm-Thick Asymmetric Composite Electrolyte with Superior Interfacial Stability for Solid-State Lithium-Metal Batteries
1
作者 Zheng Zhang Jingren Gou +4 位作者 Kaixuan Cui Xin Zhang Yujian Yao Suqing Wang Haihui Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期397-409,共13页
Solid-state lithium metal batteries(SSLMBs)show great promise in terms of high-energy-density and high-safety performance.However,there is an urgent need to address the compatibility of electrolytes with high-voltage ... Solid-state lithium metal batteries(SSLMBs)show great promise in terms of high-energy-density and high-safety performance.However,there is an urgent need to address the compatibility of electrolytes with high-voltage cathodes/Li anodes,and to minimize the electrolyte thickness to achieve highenergy-density of SSLMBs.Herein,we develop an ultrathin(12.6μm)asymmetric composite solid-state electrolyte with ultralight areal density(1.69 mg cm^(−2))for SSLMBs.The electrolyte combining a garnet(LLZO)layer and a metal organic framework(MOF)layer,which are fabricated on both sides of the polyethylene(PE)separator separately by tape casting.The PE separator endows the electrolyte with flexibility and excellent mechanical properties.The LLZO layer on the cathode side ensures high chemical stability at high voltage.The MOF layer on the anode side achieves a stable electric field and uniform Li flux,thus promoting uniform Li^(+)deposition.Thanks to the well-designed structure,the Li symmetric battery exhibits an ultralong cycle life(5000 h),and high-voltage SSLMBs achieve stable cycle performance.The assembled pouch cells provided a gravimetric/volume energy density of 344.0 Wh kg^(−1)/773.1 Wh L^(−1).This simple operation allows for large-scale preparation,and the design concept of ultrathin asymmetric structure also reveals the future development direction of SSLMBs. 展开更多
关键词 Solid-state lithium metal batteries Composite solid-state electrolyte Ultrathin asymmetric structure Pouch cells
下载PDF
Seismic Responses of Asymmetric Base-Isolated Structures under Near-Fault Ground Motion 被引量:1
2
作者 叶昆 李黎 方秦汉 《Journal of Southwest Jiaotong University(English Edition)》 2008年第4期335-345,共11页
An inter-story shear model of asymmetric base-isolated structures incorporating deformation of each isolation bearing was built, and a method to simultaneously simulate bi-directional near-fault and far-field ground m... An inter-story shear model of asymmetric base-isolated structures incorporating deformation of each isolation bearing was built, and a method to simultaneously simulate bi-directional near-fault and far-field ground motions was proposed. A comparative study on the dynamic responses of asymmetric base-isolated structures under near-fault and far-field ground motions were conducted to investigate the effects of eccentricity in the isolation system and in the superstructures, the ratio of the uncoupled torsional to lateral frequency of the superstructure and the pulse period of near-fault ground motions on the nonlinear seismic response of asymmetric base-isolated structures. Numerical results show that eccentricity in the isolation system makes asymmetric base-isolated structure more sensitive to near-fault ground motions, and the pulse period of near-fault ground motions plays an import role in governing the seismic responses of asymmetric base-isolated structures. 展开更多
关键词 asymmetric base-isolated structure Near-fault ground motion Far-field ground motion Nonlinear seismic response
下载PDF
The role of viscoelastic damping on retrofitting seismic performance of asymmetric reinforced concrete structures
3
作者 Zeshan Alam Chunwei Zhang Bijan Samali 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2020年第1期223-237,共15页
The primary purpose of this research is to improve the seismic response of a complex asymmetric tall structure using viscoelastic(VE) dampers. Asymmetric structures have detrimental effects on the seismic performance ... The primary purpose of this research is to improve the seismic response of a complex asymmetric tall structure using viscoelastic(VE) dampers. Asymmetric structures have detrimental effects on the seismic performance because such structures create abrupt changes in the stiffness or strength that may lead to undesirable stress concentrations at weak locations. Structural control devices are one of the effective ways to reduce seismic impacts, particularly in asymmetric structures. For passive vibration control of structures, VE dampers are considered among the most preferred devices for energy dissipation. Therefore, in this research, VE dampers are implemented at strategic locations in a realistic case study structure to increase the level of distributed damping without occupying significant architectural space and reducing earthquake vibrations in terms of story displacements(drifts) and other design forces. It has been concluded that the seismic response of the considered structure retrofitted with supplemental VE dampers corresponded well in controlling the displacement demands. Moreover, it has been demonstrated that seismic response in terms of interstory drifts was effectively mitigated with supplemental damping when added up to a certain level. Exceeding the supplemental damping from this level did not contribute to additional mitigation of the seismic response of the considered structure. In addition, it was found that the supplemental damping increased the total acceleration of the considered structure at all floor levels, which indicates that for irregular tall structures of this type, VE dampers were only a good retrofitting measure for earthquake induced interstory deformations and their use may not be suitable for acceleration sensitive structures. Overall, the research findings demonstrate how seismic hazards to these types of structures can be reduced by introducing additional damping into the structure. 展开更多
关键词 viscoelastic dampers seismic analysis asymmetric structure nonlinear modal time history analysis
下载PDF
Asymmetric N,O-Coordinated Single Atomic Co Sites for Stable Lithium Metal Anodes
4
作者 Yifan Li Daliang Fang +8 位作者 Xue Liang Li Dong Yan Shibo Xi Tian Chen Li Congjian Lin Shaozhuan Huang Jianbei Qiu Xuhui Xu Hui Ying Yang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第5期425-431,共7页
Lithium metal has been considered one of the most promising anodes for next-generation rechargeable batteries,but its practical application is largely hindered by the uncontrollable dendrite growth and infinite volume... Lithium metal has been considered one of the most promising anodes for next-generation rechargeable batteries,but its practical application is largely hindered by the uncontrollable dendrite growth and infinite volume change.Here,inspired by superior catalytic effects of single-atom catalysts,carbon-supported single atomic Co with asymmetric N,O-coordination(Co-N/O)is developed for Li metal battery.Experimental results and theoretical calculations indicate that single atomic Co atoms with asymmetric N,O-coordination present enhanced binding ability toward Li in comparison with N-coordinated atomic Co site and isolated O site,enabling uniform Li plating/stripping.Moreover,the asymmetric N,O-coordination around Co atoms induces co-activation effects,lowering the energy barriers toward Li^(+)to Li^(0)conversion and largely promoting the deposition kinetics.When used as a Li deposition host,the Co-N/O achieves a high average coulombic efficiency of 98.6%at a current density of 1 mA cm^(-2)and a capacity of 2 mAh cm^(-2),long cycling life of 2000 h in symmetrical cells,and excellent rate performance(voltage hysteresis of 23 mV at 8 mA cm^(-2)).This work provides a comprehensive understanding of single atomic metals with asymmetric heteroatom coordination in the design of Li metal anode. 展开更多
关键词 asymmetric atomic structure lithiophilicity lithium metal anode N O-coordination single atomic Co
下载PDF
Multifunctional Film Assembled from N‑Doped Carbon Nanofiber with Co–N_(4)–O Single Atoms for Highly Efficient Electromagnetic Energy Attenuation
5
作者 Jia Xu Bei Li +5 位作者 Zheng Ma Xiao Zhang Chunling Zhu Feng Yan Piaoping Yang Yujin Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期359-376,共18页
Single-atom materials have demonstrated attractive physicochemical characteristics.However,understanding the relationships between the coordination environment of single atoms and their properties at the atomic level ... Single-atom materials have demonstrated attractive physicochemical characteristics.However,understanding the relationships between the coordination environment of single atoms and their properties at the atomic level remains a considerable challenge.Herein,a facile waterassisted carbonization approach is developed to fabricate well-defined asymmetrically coordinated Co–N_(4)–O sites on biomass-derived carbon nanofiber(Co–N_(4)–O/NCF)for electromagnetic wave(EMW)absorption.In such nanofiber,one atomically dispersed Co site is coordinated with four N atoms in the graphene basal plane and one oxygen atom in the axial direction.In-depth experimental and theoretical studies reveal that the axial Co–O coordination breaks the charge distribution symmetry in the planar porphyrin-like Co–N_(4) structure,leading to significantly enhanced dielectric polarization loss relevant to the planar Co–N_(4) sites.Importantly,the film based on Co–N_(4)–O/NCF exhibits light weight,flexibility,excellent mechanical properties,great thermal insulating feature,and excellent EMW absorption with a reflection loss of−45.82 dB along with an effective absorption bandwidth of 4.8 GHz.The findings of this work offer insight into the relationships between the single-atom coordination environment and the dielectric performance,and the proposed strategy can be extended toward the engineering of asymmetrically coordinated single atoms for various applications. 展开更多
关键词 Co single atoms asymmetric coordination structure Axial oxygen coordination Electromagnetic wave absorption Multifunctional film
下载PDF
Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers 被引量:3
6
作者 Wen-Jie Wang Ming-Le Liao +2 位作者 Jun Yuan Si-Yuan Luo Feng Huang 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第7期321-326,共6页
The effects of Ga N/In Ga N asymmetric lower waveguide(LWG)layers on photoelectrical properties of In Ga N multiple quantum well laser diodes(LDs)with an emission wavelength of around 416 nm are theoretically investig... The effects of Ga N/In Ga N asymmetric lower waveguide(LWG)layers on photoelectrical properties of In Ga N multiple quantum well laser diodes(LDs)with an emission wavelength of around 416 nm are theoretically investigated by tuning the thickness and the indium content of In Ga N insertion layer(In Ga N-IL)between the Ga N lower waveguide layer and the quantum wells,which is achieved with the Crosslight Device Simulation Software(PIC3D,Crosslight Software Inc.).The optimal thickness and the indium content of the In Ga N-IL in lower waveguide layers are found to be 300 nm and 4%,respectively.The thickness of In Ga N-IL predominantly affects the output power and the optical field distribution in comparison with the indium content,and the highest output power is achieved to be 1.25 times that of the reference structure(symmetric Ga N waveguide),which is attributed to the reduced optical absorption loss as well as the concentrated optical field nearby quantum wells.Furthermore,when the thickness and indium content of In Ga N-IL both reach a higher level,the performance of asymmetric quantum wells LDs will be weakened rapidly due to the obvious decrease of optical confinement factor(OCF)related to the concentrated optical field in the lower waveguide. 展开更多
关键词 asymmetric waveguide structure InGaN multiple quantum wells optical absorption loss optical field distribution
下载PDF
Recent Progress on Asymmetric Carbon- and Silica-Based Nanomaterials: From Synthetic Strategies to Their Applications 被引量:2
7
作者 Haitao Li Liang Chen +2 位作者 Xiaomin Li Daoguang Sun Haijiao Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第3期134-168,共35页
Carbon-and silica-based nanomaterials possess a set of merits including large surface area,good structural stability,diversified morphology,adjustable structure,and biocompatibility.These outstanding features make the... Carbon-and silica-based nanomaterials possess a set of merits including large surface area,good structural stability,diversified morphology,adjustable structure,and biocompatibility.These outstanding features make them widely applied in different fields.However,limited by the surface free energy effect,the current studies mainly focus on the symmetric structures,such as nanospheres,nanoflowers,nanowires,nanosheets,and core-shell structured composites.By comparison,the asymmetric structure with ingenious adjustability not only exhibits a larger effective surface area accompanied with more active sites,but also enables each component to work independently or corporately to harness their own merits,thus showing the unusual performances in some specific applications.The current review mainly focuses on the recent progress of design principles and synthesis methods of asymmetric carbon-and silica-based nanomaterials,and their applications in energy storage,catalysis,and biomedicine.Particularly,we provide some deep insights into their unique advantages in related fields from the perspective of materials’structure-performance relationship.Furthermore,the challenges and development prospects on the synthesis and applications of asymmetric carbon-and silica-based nanomaterials are also presented and highlighted. 展开更多
关键词 Carbon-and silica-based nanoparticles asymmetric structure Synthetic strategies Energy storage and conversion BIOMEDICINE
下载PDF
AN ANALYSIS OF THE ASYMMETRICAL STRUCTURE OF TYPHOON AERE'S PRECIPITATION 被引量:2
8
作者 濮江平 吕梅 邹力 《Journal of Tropical Meteorology》 SCIE 2010年第1期91-95,共5页
The structural characteristics of 2004 typhoon Aere's precipitation are analyzed using the high-resolution data from the Tropical Rainfall Measuring Mission(TRMM) of the National Aeronautics Space Administration(N... The structural characteristics of 2004 typhoon Aere's precipitation are analyzed using the high-resolution data from the Tropical Rainfall Measuring Mission(TRMM) of the National Aeronautics Space Administration(NASA).It is found that the typhoon's characteristics vary at different stages of its development.To analyze the asymmetric causation of precipitation distribution,data from the National Center for Environmental Prediction(NCEP) reanalysis are used to calculate the vertical integral of the water vapor flux vector.The results show that because of this process,along with the unique phenomenon of twin-typhoon circulation,the easterly air current of the typhoon's northern side and the southwesterly air current of its southern side play a joint role in transporting water vapor.Furthermore,its transport effects vary greatly at the different stages of development,showing the peculiarity of the water source for this typhoon process.The distributions of the typhoon convection area—characterized by heavy precipitation and a maximum-value area of the water vapor flux,as well as a strong ascending-motion area—differ at different stages of the typhoon's development.The non-uniform distribution of water vapor flux and the vertical motion bring about asymmetrical distribution of the typhoon precipitation. 展开更多
关键词 typhoon precipitation TRMM vapor flux vector asymmetrical structure
下载PDF
Stable single longitudinal mode erbium-doped silica fiber laser based on an asymmetric linear three-cavity structure 被引量:2
9
作者 冯亭 延凤平 +4 位作者 李琦 彭万敬 冯素春 谭思宇 温晓东 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第1期268-272,共5页
We present a stable linear-cavity single longitudinal mode (SLM) erbium-doped silica fiber laser. It consists of four fiber Bragg gratings (FBGs) directly written in a section of photosensitive erbium-doped fiber ... We present a stable linear-cavity single longitudinal mode (SLM) erbium-doped silica fiber laser. It consists of four fiber Bragg gratings (FBGs) directly written in a section of photosensitive erbium-doped fiber (EDF) to form an asymmetric three-cavity structure. The stable SLM operation at a wavelength of 1545.112 nm with a 3-dB bandwidth of 0.012 nm and an optical signal-to-noise ratio (OSNR) of about 60 dB is verified experimentally. Under laboratory conditions, the performance of a power fluctuation of less than 0.05 dB observed from the power meter for 6 h and a wavelength variation of less than 0.01 nm obtained from the optical spectrum analyzer (OSA) for about 1.5 h are demonstrated. The gain fiber length is no longer limited to only several centimeters for SLM operation because of the excellent mode-selecting ability of the asymmetric three-cavity structure. The proposed scheme provides a simple and cost-effective approach to realizing a stable SLM fiber laser. 展开更多
关键词 asymmetric three-cavity structure single longitudinal mode erbium-doped fiber laser linear cavity
下载PDF
Torsionally coupled dynamic performance analysis of asymmetric offshore platforms subjected to wave and earthquake loadings
10
作者 He Xiaoyu and Li Hongnan 1.Zhejiang Provincial Planning,Design & Research Institute of Communications,Hangzhou 310006,China 2.State Key Laboratory of Coastal and Offshore Engineering,Dalian University of Technology,Dalian 116024,China 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2010年第2期247-258,共12页
The dynamic equations of motion of asymmetric offshore platforms under three different environmental conditions:seismic action,wave action and their combination are established in this paper. In establishing these mot... The dynamic equations of motion of asymmetric offshore platforms under three different environmental conditions:seismic action,wave action and their combination are established in this paper. In establishing these motion equations,three typical eccentricity types including mass eccentricity,rigidity eccentricity and their combination were considered,as are eccentricities that occur un-idirectionally and bi-directionally. The effects of the eccentricity type,the dynamic characteristics and the environmental conditions on the torsional coupling response of platforms are investigated and compared. An effort has also been made to analyze the inffluence of accidental eccentricity on asymmetric platforms with different eccentricity in two horizontally orthogonal directions. The results are given in terms of non-dimensional parameters,accounting for the uncoupled torsional to lateral frequency ratio. Numerical results reveal that the eccentricity type has a great inffluence on the torsionally coupled response under different environmental conditions. Therefore,it is necessary to consider the combination of earthquake and wave action in the seismic response analysis of some offshore platforms. 展开更多
关键词 offshore platform asymmetric structure accidental eccentricity torsion coupling earthquake load wave load
下载PDF
SYNTHESIS AND STRUCTURE OF AN ASYMMETRIC TRICOBALT COMPOUND Co_3(o-HOC_6H_4S)_2(o-OC_6H_4S)_2(PEt_3)_3
11
作者 Yong Jin XU Bei Sheng KANG Xue Tai CHEN Yong Han HU Fujian Institute of Research on the Structure of Matter and Fuzhou Laboratory of Structural Chemistry Chinese Academy of Science,Fuzhou,Fujian 350002 《Chinese Chemical Letters》 SCIE CAS CSCD 1992年第12期1017-1018,共2页
Compound Co_3(o-HOC_6H_4S)_2(o-OC_6H_4S)_2(PEt_3)_3 was obtained by reaction of CoCl_2, o-HOC_6H_4SH(H_2mD)and PEt_3 in ethanol in the presence of NaOCH_3.The three Co atoms are triangularly arranged and asymmetricall... Compound Co_3(o-HOC_6H_4S)_2(o-OC_6H_4S)_2(PEt_3)_3 was obtained by reaction of CoCl_2, o-HOC_6H_4SH(H_2mD)and PEt_3 in ethanol in the presence of NaOCH_3.The three Co atoms are triangularly arranged and asymmetrically bridged by four S and one O atoms from the four H_2mp ligands and terminally ligated by one O and three P atoms.Two free hydroxyl groups form two internal hydrogen bonds with adjacent oxo donor atoms. 展开更多
关键词 Co PEt3 SYNTHESIS AND STRUCTURE OF AN asymmetric TRICOBALT COMPOUND Co3 o-HOC6H4S o-OC6H4S OC
下载PDF
The Analysis of the Asymmetric Precipitation Caused by the No.10 Tropical Cyclone “Damrey” in 2012 Based on Observation and Numerical Simulation
12
作者 Jian Li Jiqiu Liu 《Journal of Geoscience and Environment Protection》 2022年第8期145-157,共13页
The No.10 tropical cyclone “Damrey” in 2012 is the first landing typhoon on the north of the Yangtze River after 1949. After its landing, Damrey showed an obvious asymmetric structure and precipitation. Using the ER... The No.10 tropical cyclone “Damrey” in 2012 is the first landing typhoon on the north of the Yangtze River after 1949. After its landing, Damrey showed an obvious asymmetric structure and precipitation. Using the ERA-interim reanalysis data from the European Centre for Medium-Range Weather Forecasting (ECMWF), the study simulated the whole process of Damrey from pre-landing to extinct by using WRF model. Based on the model result and FY-2E satellite data and observation data, the study analysis the causes of the asymmetric structure of Damrey. It is found that the descending motion is strong on the west and south sides of the typhoon, they blocked the southwest water vapor transport. So the development of convective cloud system was hindered, and the wind shear on the west and south sides on the typhoon was stronger than on the east and north. It caused the result of the precipitation on the east and north sides of typhoon much more than on the west and south. Q-vector, upper level jets and other factors are also analyzed in this study. 展开更多
关键词 Typhoon Damrey asymmetric Structure Q-Vector WRF Model
下载PDF
Recent Advances in Asymmetric Structural Composites for Excellent Electromagnetic Interference Shielding:A Review
13
作者 Ying Zhou Bai Xue +2 位作者 Lan Xie Chang-Mei Wu Qiang Zheng 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2024年第6期693-710,共18页
Since electromagnetic pollution is detrimental to human health and the environment,numerous efforts have been successively made to achieve excellent electromagnetic interference shielding effectiveness(EMI SE)via desi... Since electromagnetic pollution is detrimental to human health and the environment,numerous efforts have been successively made to achieve excellent electromagnetic interference shielding effectiveness(EMI SE)via designing the hierarchical structures for electromagnetic interference(EMI)shielding polymer composites.Among the plentiful structures,the asymmetric structures are currently a hot spot,principally categorizing into multi-layered,porous,fibrous,and segregated asymmetric structures,which endows the high EMI shielding performance for polymer composites incorporated with magnetic,conductive,and/or dielectric micro/nano-fillers,due to the“absorption-reflection-reabsorption”shielding mechanism.Therefore,this review provides the retrospection and summary of the efforts with respect to abundant asymmetric structures and multifunctional micro/nano-fillers for enhancing EMI shielding properties,which is conducive to the booming development of polymeric EMI shielding materials for the promising prospect in modern electronics and 5-generation(5G)technology. 展开更多
关键词 asymmetric structure Micro/nano functional fller Polymer composite Electromagnetic interference shielding
原文传递
Asymmetric reversible structural switching of a diene coordination polymer promoted by UV-visible light
14
作者 Yong Wang Qiaoqiao Zhang +3 位作者 Yong-Yong Cao Qi Liu Brendan F.Abrahams Jian-Ping Lang 《Science China Chemistry》 SCIE EI CAS CSCD 2024年第2期536-541,共6页
In natural and artificial systems,reversible reactions are commonly asymmetric with respect to the time scale and nature of the stimuli which drive the forward and backward processes.In applications for which switchin... In natural and artificial systems,reversible reactions are commonly asymmetric with respect to the time scale and nature of the stimuli which drive the forward and backward processes.In applications for which switching behavior is required,it is desirable that the reversible reaction goes as close to symmetric as possible;however,such systems are uncommon.Herein,we report an example of ultraviolet(UV)-visible light-regulated asymmetric reversible structural switching involving a diene-based coordination polymer,CP1 and its monocyclobutane product,CP1a.It is possible to cycle at least ten times through a forward [2+2] photocycloaddition reaction and the reverse,photocleavage reaction.A single cycle can be completed within a few minutes.The transformation is accompanied by fast and distinct fluorescence changes,arising from optimisation of the reaction conditions.Density functional theory calculations allow rationalisation of the asymmetric reversible transformation between CP1 and CP1a rather than between CP1 and its dicyclobutane product CP1b.This work provides a clear illustration of reversible structural switching which approaches symmetric behaviour with respect to reaction rate and stimuli.The insights gained from this work also assist in the design of fast,reversible switching materials. 展开更多
关键词 asymmetrical reversible structural switching coordination polymer PHOTOCYCLOADDITION UV-visible light-controlled fluorescence switching
原文传递
Unidirectional transport of both wettable and nonwettable liquids on an asymmetrically concave structured surface
15
作者 Zhongxue Tang Kang Luan +1 位作者 Bojie Xu Huan Liu 《Fundamental Research》 CAS CSCD 2024年第3期557-562,共6页
Unidirectional liquid transport(UDLT)has been widely used in various fields as an important process for transferring both mass and energy.However,UDLT driven by a structural gradient has been witnessed for a long time... Unidirectional liquid transport(UDLT)has been widely used in various fields as an important process for transferring both mass and energy.However,UDLT driven by a structural gradient has been witnessed for a long time only in wettable liquids.For nonwettable liquids,UDLT can hardly proceed merely by a structural gradient.Herein,we propose an asymmetrically concave structured surface(AMC-surface),featuring tip-to-base periodically arranged pyramid-shaped concave structures with a certain degree of overlap,which enables the UDLT of both wettable and nonwettable liquids.For wettable liquids,the capillary force along each corner leads to the UDLT pointing toward the base side of the concave pyramid,while for nonwettable liquids,the UDLT is attributable to the static liquid pressure overwhelming the repulsive Laplace pressure induced by the asymmetric grooves and overlapping part.As a result,both wettable and nonwettable liquids transport spontaneously and unidirectionally on the AMC-surface with no energy input.Moreover,the concave structure endows good mechanical stability and can be easily prepared using a facile nail-punching approach over a large area.We also demonstrated its application in a continuous chemical reaction in a confined area.We envision that the unique UDLT behavior on the as-developed AMC-surface will shed new light on the programmable manipulation of various liquids. 展开更多
关键词 Unidirectional liquidtransport asymmetrically concave structure Capillary force Laplace pressure WETTABILITY
原文传递
A Single-Board Integrated Millimeter-Wave Asymmetric Full-Digital Beamforming Array for B5G/6G Applications
16
作者 Qingqing Lin Jun Xu +9 位作者 Kai Chen Long Wang Wei Li Zhiqiang Yu Guangqi Yang Jianyi Zhou Zhe Chen Jixin Chen Xiaowei Zhu Wei Hong 《Engineering》 SCIE EI CAS 2024年第10期35-50,共16页
In this article,a single-board integrated millimeter-wave(mm-Wave)asymmetric full-digital beamforming(AFDBF)array is developed for beyond-fifth-generation(B5G)and sixth-generation(6G)communications.The proposed integr... In this article,a single-board integrated millimeter-wave(mm-Wave)asymmetric full-digital beamforming(AFDBF)array is developed for beyond-fifth-generation(B5G)and sixth-generation(6G)communications.The proposed integrated array effectively addresses the challenge of arranging a large number of ports in a full-digital array by designing vertical connections in a three-dimensional space and successfully integrating full-digital transmitting(Tx)and receiving(Rx)arrays independently in a single board.Unlike the traditional symmetric array,the proposed asymmetric array is composed of an 8×8 Tx array arranged in a square shape and an 8+8 Rx array arranged in an L shape.The center-to-center distance between two adjacent elements is 0.54k0 for both the Tx and Rx arrays,where k0 is the free-space wavelength at 27 GHz.The proposed AFDBF array possesses a more compact structure and lower system hardware cost and power consumption compared with conventional brick-type full-digital arrays.In addition,the energy efficiency of the proposed AFDBF array outperforms that of a hybrid beamforming array.The measurement results indicate that the operating frequency band of the proposed array is 24.25–29.50 GHz.An eight-element linear array within the Tx array can achieve a scanning angle ranging from-47°to+47°in both the azimuth and the elevation planes,and the measured scanning range of each eight-element Rx array is–45°to+45°.The measured maximum effective isotropic radiated power(EIRP)of the eight-element Tx array is 43.2 dBm at 28.0 GHz(considering the saturation point).Furthermore,the measured error vector magnitude(EVM)is less than 3%when 64-quadrature amplitude modulation(QAM)waveforms are used. 展开更多
关键词 Full-digital beamforming array asymmetric structure Single-board integrated Beyond fifth-generation and sixthgeneration Millimeter-wave communication Complex modulation Printed circuit board Vertical connection
下载PDF
Enhancement effect of asymmetry on the thermal conductivity of double-stranded chain systems
17
作者 张茂平 钟伟荣 艾保全 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第10期171-176,共6页
Using nonequilibrium molecular dynamics simulations, we study the thermal conductivity of asymmetric double chains. We couple two different single chains through interchain coupling to build three kinds of asymmetric ... Using nonequilibrium molecular dynamics simulations, we study the thermal conductivity of asymmetric double chains. We couple two different single chains through interchain coupling to build three kinds of asymmetric double- stranded chain system: intrachain interaction, external potential, and mass asymmetric double chains. It is reported that asymmetry is helpful in improving the thermal conductivity of the system. We first propose double-heat flux channels to explain the influence of asymmetric structures on the thermal conductivity. The phonon spectral behaviour and finite size effect are also included. 展开更多
关键词 thermal conductivity double-stranded chain asymmetric structures inter-chain flux
下载PDF
The Role of β-effect and a Uniform Current on Tropical Cyclone Intensity 被引量:9
18
作者 端义宏 伍荣生 +2 位作者 余晖 梁旭东 陈仲良 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2004年第1期75-86,共12页
A limited-area primitive equation model is used to study the role of the β-effect and a uniform current on tropical cyclone (TC) intensity. It is found that TC intensity is reduced in a non-quiescent environment comp... A limited-area primitive equation model is used to study the role of the β-effect and a uniform current on tropical cyclone (TC) intensity. It is found that TC intensity is reduced in a non-quiescent environment compared with the case of no uniform current. On an f-plane, the rate of intensification of a tropical cyclone is larger than that of the uniform flow. A TC on a β-plane intensifies slower than one on an f-plane. The main physical characteristic that distinguishes the experiments is the asymmetric thermodynamic (including convective) and dynamic structures present when either a uniform flow or β-effect is introduced. But a fairly symmetric TC structure is simulated on an f-plane. The magnitude of the warm core and the associated subsidence are found to be responsible for such simulated intensity changes. On an f-plane, the convection tends to be symmetric, which results in strong upper-level convergence near the center and hence strong forced subsidence and a very warm core. On the other hand, horizontal advection of temperature cancels part of the adiabatic heating and results in less warming of the core, and hence the TC is not as intense. This advective process is due to the tilt of the vortex as a result of the β-effect. A similar situation occurs in the presence of a uniform flow. Thus, the asymmetric horizontal advection of temperature plays an important role in the temperature distribution. Dynamically, the asymmetric angular momentum (AM) flux is very small on an f-plane throughout the troposphere. However, the total AM exports at the upper levels for a TC either on a β-plane or with a uniform flow environment are larger because of an increase of the asymmetric as well as symmetric AM export on the plane at radii >450 km, and hence there is a lesser intensification. 展开更多
关键词 β-effect uniform current asymmetric structure tropical cyclone intensity change
下载PDF
810-nm InGaAlAs/AlGaAs double quantum well semiconductor lasers with asymmetric waveguide structures 被引量:2
19
作者 李林 刘国军 +4 位作者 李占国 李梅 王晓华 李辉 万春明 《Chinese Optics Letters》 SCIE EI CAS CSCD 2008年第4期268-270,共3页
The 810-nm InGaAlAs/AlGaAs double quantum well (QW) semiconductor lasers with asymmetric waveguide structures, grown by molecular beam epitaxy, show high quantum efficiency and high-power conver- sion efficiency at ... The 810-nm InGaAlAs/AlGaAs double quantum well (QW) semiconductor lasers with asymmetric waveguide structures, grown by molecular beam epitaxy, show high quantum efficiency and high-power conver- sion efficiency at continuous-wave (CW) power output. The threshold current density and slope efficiency of the device are 180 A/cm^2 and 1.3 W/A, respectively. The internal loss and the internal quantum efficiency are 1.7 cm^-1 and 93%, respectively. The 70% maximum power conversion efficiency is achieved with narrow far-field patterns. 展开更多
关键词 GAAS WELL nm InGaAlAs/AlGaAs double quantum well semiconductor lasers with asymmetric waveguide structures
原文传递
Experimental study of the characteristics of novel microactuator based on optothermal expansion 被引量:1
20
作者 刘超 《High Technology Letters》 EI CAS 2009年第2期131-134,共4页
A novel asymmetric optothermal microactuator was developed. A microactuator of 750μm length was machined by an excimer laser micmmachining system using single layer material. It had an asymmetric structure consisting... A novel asymmetric optothermal microactuator was developed. A microactuator of 750μm length was machined by an excimer laser micmmachining system using single layer material. It had an asymmetric structure consisting of two thin expansion arms with different widths. A laser diode (660nm) was employed as the external power source to activate the microactuator. We introduced a charge coupled device (CCD)-combined optical microscope and a computer system to observe and capture the microactuator' s deflection and vibration. Experiments have been carried out to check the feasibility of deflection, and the data of deflection have been measured under different laser power as well as under different pulse frequency. The results show that the actuator can practically generate an obvious lateral deflection or vibration, the maximum could be larger than 20μm. Moreover, the deflection status of the microactuator could be controlled wirelessly or remotely by changing the laser power and its pulse frequency. 展开更多
关键词 optothermal expansion MICROACTUATOR asymmetric structure DEFLECTION VIBRATION
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部