Using the boundary integral equation method, the problem of an external circular crack in a three_dimensional infinite elastic body under asymmetric loadings is investigated. The two_dimensional singular boundary inte...Using the boundary integral equation method, the problem of an external circular crack in a three_dimensional infinite elastic body under asymmetric loadings is investigated. The two_dimensional singular boundary integral equations of the problem were reduced to a system of Abel integral equations by means of Fourier series and hypergeometric functions. The exact solutions of stress intensity factors are obtained for the problem of an external circular crack under asymmetric loadings, which are even more universal than the results obtained by the use of Hankel transform method. The results demonstrate that the boundary integral equation method has great potential as a new analytic method.展开更多
The dynamic equations of motion of asymmetric offshore platforms under three different environmental conditions:seismic action,wave action and their combination are established in this paper. In establishing these mot...The dynamic equations of motion of asymmetric offshore platforms under three different environmental conditions:seismic action,wave action and their combination are established in this paper. In establishing these motion equations,three typical eccentricity types including mass eccentricity,rigidity eccentricity and their combination were considered,as are eccentricities that occur un-idirectionally and bi-directionally. The effects of the eccentricity type,the dynamic characteristics and the environmental conditions on the torsional coupling response of platforms are investigated and compared. An effort has also been made to analyze the inffluence of accidental eccentricity on asymmetric platforms with different eccentricity in two horizontally orthogonal directions. The results are given in terms of non-dimensional parameters,accounting for the uncoupled torsional to lateral frequency ratio. Numerical results reveal that the eccentricity type has a great inffluence on the torsionally coupled response under different environmental conditions. Therefore,it is necessary to consider the combination of earthquake and wave action in the seismic response analysis of some offshore platforms.展开更多
Using the boundary integral equation method, the problem of an external circular crack in a three-dimensional infinite elastic body under asymmetric loadings is investigated. The two-dimensional singular boundary inte...Using the boundary integral equation method, the problem of an external circular crack in a three-dimensional infinite elastic body under asymmetric loadings is investigated. The two-dimensional singular boundary integral equations of the problem were reduced to a system of Abel integral equations by means of Fourier series and hypergeometric functions. The exact solutions of stress intensity factors ore obtained for the problem of an external circular crack under asymmetric loadings, which are even more universal than the results obtained by the use of Hankel transform method. The results demonstrate that the boundary integral equation method has great potential as a new analytic method.展开更多
xThis study has as its objective to collaborate with the expansion in the market of electric energy in rural areas,offering as such an innovative prospect to the solution of associated problems through use of the asym...xThis study has as its objective to collaborate with the expansion in the market of electric energy in rural areas,offering as such an innovative prospect to the solution of associated problems through use of the asymmetric three-phase induction motor,supplied by a single-phase source.In this system,capacitor switching is applied during operation,while theoretical and practical results are presented for the application of this switching in a three-phase asymmetric induction motor of 20 hp.展开更多
The difference in electricity and power usage time leads to an unbalanced current among the three phases in the power grid.The three-phase unbalanced is closely related to power planning and load distribution.When the...The difference in electricity and power usage time leads to an unbalanced current among the three phases in the power grid.The three-phase unbalanced is closely related to power planning and load distribution.When the unbalance occurs,the safe operation of the electrical equipment will be seriously jeopardized.This paper proposes a Hierarchical Temporal Memory(HTM)-based three-phase unbalance prediction model consisted by the encoder for binary coding,the spatial pooler for frequency pattern learning,the temporal pooler for pattern sequence learning,and the sparse distributed representations classifier for unbalance prediction.Following the feasibility of spatial-temporal streaming data analysis,we adopted this brain-liked neural network to a real-time prediction for power load.We applied the model in five cities(Tangshan,Langfang,Qinhuangdao,Chengde,Zhangjiakou)of north China.We experimented with the proposed model and Long Short-term Memory(LSTM)model and analyzed the predict results and real currents.The results show that the predictions conform to the reality;compared to LSTM,the HTM-based prediction model shows enhanced accuracy and stability.The prediction model could serve for the overload warning and the load planning to provide high-quality power grid operation.展开更多
Long-term settlements for underground structures, such as tunnels and pipelines, are generally observed after the completion of construction in soft clay. The soil consolidation characteristic has great influences on ...Long-term settlements for underground structures, such as tunnels and pipelines, are generally observed after the completion of construction in soft clay. The soil consolidation characteristic has great influences on the long-term deformation for underground structures. A three-dimensional consolidation analysis method under the asymmetric loads is developed for porous layered soil based on Biot's classical theory. Time-displacement effects can be fully considered in this work and the analytical solutions are obtained by the state space approach in the Cartesian coordinate. The Laplace and double Fourier integral transform are applied to the state variables in order to reduce the partial differential equations into algebraic differential equations and easily obtain the state space solution. Starting from the governing equations of saturated porous soil, the basic relationship of state space variables is established between the ground surface and the arbitrary depth in the integral transform domain. Based on the continuity conditions and boundary conditions of the multi-layered pore soil model, the multi-layered pore half-space solutions are obtained by means of the transfer matrix method and the inverse integral transforms. The accuracy of proposed method is demonstrated with existing classical solutions. The results indicate that the porous homogenous soils as well as the porous non-homogenous layered soils can be considered in this proposed method. When the consolidation time factor is 0.01, the value of immediate consolidation settlement coefficient calculated by the weighted homogenous solution is 27.4% bigger than the one calculated by the non-homogeneity solution. When the consolidation time factor is 0.05, the value of excess pore water pressure for the weighted homogenous solution is 27.2% bigger than the one for the non-homogeneity solution. It is shown that the material non-homogeneity has a great influence on the long-term settlements and the dissipation process of excess pore water pressure.展开更多
Z-source inverter can boost the voltage of the DC-side, allow the two switches of the same bridge arm conducting at the same time and it has some other advantages. The zero-sequence current flows through the fourth le...Z-source inverter can boost the voltage of the DC-side, allow the two switches of the same bridge arm conducting at the same time and it has some other advantages. The zero-sequence current flows through the fourth leg of the three-phase four-leg inverter so the three-phase four-leg inverter can work with unbalanced load. This paper presents a Z-source three-phase four-leg inverter which combines a Z-source network with three-phase four-leg inverter. The circuit uses simple SPWM modulation technique and the fourth bridge arm uses fully compensated control method. The inverter can maintain a symmetrical output voltage when the proposed scheme under the unbalanced load.展开更多
When an output curve force is applied to a horizontal servo cylinder with a heavy load, the piston rod bears a dynamic partial load based on the installation and load characteristics, which significantly a ects the fr...When an output curve force is applied to a horizontal servo cylinder with a heavy load, the piston rod bears a dynamic partial load based on the installation and load characteristics, which significantly a ects the frequency response and control accuracy of the servo cylinder. Based on this partial load, increased friction can lead to cylinder bore scu ng, leakage, lack of output power, or even system failure. In this paper, a novel asymmetric static-pressure support structure is proposed based on the principle of hydrostatic support. The radial component force of a dynamic partial load is balanced by cooperation between the support oil cushion of the variable hydraulic pressure support structure, oil cushion of the supportive force, and the damper. Adaptive control of the servo cylinder piston rod, guide sleeve, and piston, as well as the cylinder oil film friction between lubricated surfaces is achieved. In this paper, theoretical design and analysis of the traditional hydrostatic bearing structure and novel structure are presented. A hydraulic dynamic shear scissor is used as a research target to derive a structural dynamic model. Comparative simulations are performed using Matlab Simulink. Additionally, flow field analysis of the novel structure is performed, which verifies the rationality and feasibility of the proposed structure and system.展开更多
The problems on the non-uniqueness and stability of a two-family fiber- reinforced anisotropic incompressible hyper-elastic square sheet under equibiaxial tensile dead loading are examined within the framework of fini...The problems on the non-uniqueness and stability of a two-family fiber- reinforced anisotropic incompressible hyper-elastic square sheet under equibiaxial tensile dead loading are examined within the framework of finite elasticity. For a two-family fiber-reinforced square sheet, which is in-plane symmetric and subjected to the in-plane symmetric tension in dead loading on the edges, three symmetrically deformed configu- rations and six asymmetrically deformed configurations are possible for any values of the loading. Moreover, another four bifurcated asymmetrically deformed configurations are possible for the loading beyond a certain criticM value. The stability of all the solutions is discussed in comparison with the energy of the sheet. It is shown that only one of the symmetric solutions is stable when the loading is less than the critical value. However, this symmetric solution will become unstable when the loading is larger than the critical value, while one of the four bifurcated asymmetric solutions will be stable.展开更多
One of the very important functions of three-phase inverter is to maintain the symmetric three-phase output voltage when the three-phase loads are unbalanced. Although the traditional symmetrical component decomposing...One of the very important functions of three-phase inverter is to maintain the symmetric three-phase output voltage when the three-phase loads are unbalanced. Although the traditional symmetrical component decomposing and superimpose theory can keep the voltage balance through compensating the positive-, negative- and zero-sequence components of the output voltage of inverter, however, this method is time-consuming and not suitable for control. Aiming at high power medium frequency inverter source, a P+Resonant (Proportion and Resonant) controller which ensured a balanced three phase output voltage under unbalanced load is proposed in this paper. The regulator was proved to be applicable to both three-phase three-wire system and three-phase four-wire system and developed two methods of realization. The simulation results verified that this method can suppressed effectively the output voltage distorted caused by the unbalanced load and attained a high quality voltage waveforms.展开更多
文摘Using the boundary integral equation method, the problem of an external circular crack in a three_dimensional infinite elastic body under asymmetric loadings is investigated. The two_dimensional singular boundary integral equations of the problem were reduced to a system of Abel integral equations by means of Fourier series and hypergeometric functions. The exact solutions of stress intensity factors are obtained for the problem of an external circular crack under asymmetric loadings, which are even more universal than the results obtained by the use of Hankel transform method. The results demonstrate that the boundary integral equation method has great potential as a new analytic method.
基金Program for Chang Kong Scholars and Innovative Research Team (No.IRT0518)National Natural Science Foundation of China Under Grant No.50708013
文摘The dynamic equations of motion of asymmetric offshore platforms under three different environmental conditions:seismic action,wave action and their combination are established in this paper. In establishing these motion equations,three typical eccentricity types including mass eccentricity,rigidity eccentricity and their combination were considered,as are eccentricities that occur un-idirectionally and bi-directionally. The effects of the eccentricity type,the dynamic characteristics and the environmental conditions on the torsional coupling response of platforms are investigated and compared. An effort has also been made to analyze the inffluence of accidental eccentricity on asymmetric platforms with different eccentricity in two horizontally orthogonal directions. The results are given in terms of non-dimensional parameters,accounting for the uncoupled torsional to lateral frequency ratio. Numerical results reveal that the eccentricity type has a great inffluence on the torsionally coupled response under different environmental conditions. Therefore,it is necessary to consider the combination of earthquake and wave action in the seismic response analysis of some offshore platforms.
基金国家自然科学基金,West Foundation of Ministry Education of China
文摘Using the boundary integral equation method, the problem of an external circular crack in a three-dimensional infinite elastic body under asymmetric loadings is investigated. The two-dimensional singular boundary integral equations of the problem were reduced to a system of Abel integral equations by means of Fourier series and hypergeometric functions. The exact solutions of stress intensity factors ore obtained for the problem of an external circular crack under asymmetric loadings, which are even more universal than the results obtained by the use of Hankel transform method. The results demonstrate that the boundary integral equation method has great potential as a new analytic method.
文摘xThis study has as its objective to collaborate with the expansion in the market of electric energy in rural areas,offering as such an innovative prospect to the solution of associated problems through use of the asymmetric three-phase induction motor,supplied by a single-phase source.In this system,capacitor switching is applied during operation,while theoretical and practical results are presented for the application of this switching in a three-phase asymmetric induction motor of 20 hp.
基金This study is supported by the National Natural Science Foundation of China(No.61801019).
文摘The difference in electricity and power usage time leads to an unbalanced current among the three phases in the power grid.The three-phase unbalanced is closely related to power planning and load distribution.When the unbalance occurs,the safe operation of the electrical equipment will be seriously jeopardized.This paper proposes a Hierarchical Temporal Memory(HTM)-based three-phase unbalance prediction model consisted by the encoder for binary coding,the spatial pooler for frequency pattern learning,the temporal pooler for pattern sequence learning,and the sparse distributed representations classifier for unbalance prediction.Following the feasibility of spatial-temporal streaming data analysis,we adopted this brain-liked neural network to a real-time prediction for power load.We applied the model in five cities(Tangshan,Langfang,Qinhuangdao,Chengde,Zhangjiakou)of north China.We experimented with the proposed model and Long Short-term Memory(LSTM)model and analyzed the predict results and real currents.The results show that the predictions conform to the reality;compared to LSTM,the HTM-based prediction model shows enhanced accuracy and stability.The prediction model could serve for the overload warning and the load planning to provide high-quality power grid operation.
基金Project(51008188)supported by National Natural Science Foundation of ChinaProject(KLE-TJGE-B1302)supported by Key Laboratory Fund of Geotechnical and Underground Engineering of Ministry of Education,ChinaProject(SKLGDUEK1205)supported by Open Program of State Key Laboratory for Geomechanics and Deep Underground Engineering,China
文摘Long-term settlements for underground structures, such as tunnels and pipelines, are generally observed after the completion of construction in soft clay. The soil consolidation characteristic has great influences on the long-term deformation for underground structures. A three-dimensional consolidation analysis method under the asymmetric loads is developed for porous layered soil based on Biot's classical theory. Time-displacement effects can be fully considered in this work and the analytical solutions are obtained by the state space approach in the Cartesian coordinate. The Laplace and double Fourier integral transform are applied to the state variables in order to reduce the partial differential equations into algebraic differential equations and easily obtain the state space solution. Starting from the governing equations of saturated porous soil, the basic relationship of state space variables is established between the ground surface and the arbitrary depth in the integral transform domain. Based on the continuity conditions and boundary conditions of the multi-layered pore soil model, the multi-layered pore half-space solutions are obtained by means of the transfer matrix method and the inverse integral transforms. The accuracy of proposed method is demonstrated with existing classical solutions. The results indicate that the porous homogenous soils as well as the porous non-homogenous layered soils can be considered in this proposed method. When the consolidation time factor is 0.01, the value of immediate consolidation settlement coefficient calculated by the weighted homogenous solution is 27.4% bigger than the one calculated by the non-homogeneity solution. When the consolidation time factor is 0.05, the value of excess pore water pressure for the weighted homogenous solution is 27.2% bigger than the one for the non-homogeneity solution. It is shown that the material non-homogeneity has a great influence on the long-term settlements and the dissipation process of excess pore water pressure.
文摘Z-source inverter can boost the voltage of the DC-side, allow the two switches of the same bridge arm conducting at the same time and it has some other advantages. The zero-sequence current flows through the fourth leg of the three-phase four-leg inverter so the three-phase four-leg inverter can work with unbalanced load. This paper presents a Z-source three-phase four-leg inverter which combines a Z-source network with three-phase four-leg inverter. The circuit uses simple SPWM modulation technique and the fourth bridge arm uses fully compensated control method. The inverter can maintain a symmetrical output voltage when the proposed scheme under the unbalanced load.
基金Supported by Nation Youth Science Foundation of China(Grant No.51505315)Collaboration Innovation Center of Taiyuan Heavy Machinery Equipment and Shanxi Provincial Natural Science Foundation of China(Grant No.201701D221135)Innovative Project of Graduate Education in Shanxi Province of China(Grant No.2016BY132)
文摘When an output curve force is applied to a horizontal servo cylinder with a heavy load, the piston rod bears a dynamic partial load based on the installation and load characteristics, which significantly a ects the frequency response and control accuracy of the servo cylinder. Based on this partial load, increased friction can lead to cylinder bore scu ng, leakage, lack of output power, or even system failure. In this paper, a novel asymmetric static-pressure support structure is proposed based on the principle of hydrostatic support. The radial component force of a dynamic partial load is balanced by cooperation between the support oil cushion of the variable hydraulic pressure support structure, oil cushion of the supportive force, and the damper. Adaptive control of the servo cylinder piston rod, guide sleeve, and piston, as well as the cylinder oil film friction between lubricated surfaces is achieved. In this paper, theoretical design and analysis of the traditional hydrostatic bearing structure and novel structure are presented. A hydraulic dynamic shear scissor is used as a research target to derive a structural dynamic model. Comparative simulations are performed using Matlab Simulink. Additionally, flow field analysis of the novel structure is performed, which verifies the rationality and feasibility of the proposed structure and system.
基金supported by the National Natural Science Foundation of China(No.10772104)the Shanghai Leading Academic Discipline Project(No.S30106)
文摘The problems on the non-uniqueness and stability of a two-family fiber- reinforced anisotropic incompressible hyper-elastic square sheet under equibiaxial tensile dead loading are examined within the framework of finite elasticity. For a two-family fiber-reinforced square sheet, which is in-plane symmetric and subjected to the in-plane symmetric tension in dead loading on the edges, three symmetrically deformed configu- rations and six asymmetrically deformed configurations are possible for any values of the loading. Moreover, another four bifurcated asymmetrically deformed configurations are possible for the loading beyond a certain criticM value. The stability of all the solutions is discussed in comparison with the energy of the sheet. It is shown that only one of the symmetric solutions is stable when the loading is less than the critical value. However, this symmetric solution will become unstable when the loading is larger than the critical value, while one of the four bifurcated asymmetric solutions will be stable.
文摘One of the very important functions of three-phase inverter is to maintain the symmetric three-phase output voltage when the three-phase loads are unbalanced. Although the traditional symmetrical component decomposing and superimpose theory can keep the voltage balance through compensating the positive-, negative- and zero-sequence components of the output voltage of inverter, however, this method is time-consuming and not suitable for control. Aiming at high power medium frequency inverter source, a P+Resonant (Proportion and Resonant) controller which ensured a balanced three phase output voltage under unbalanced load is proposed in this paper. The regulator was proved to be applicable to both three-phase three-wire system and three-phase four-wire system and developed two methods of realization. The simulation results verified that this method can suppressed effectively the output voltage distorted caused by the unbalanced load and attained a high quality voltage waveforms.