This paper proposes and implements a model-free open-loop iterative learning control(ILC)strategy to realize the speed control of the single-phase flux switching motor(FSM)with an asymmetrical rotor.Base on the propos...This paper proposes and implements a model-free open-loop iterative learning control(ILC)strategy to realize the speed control of the single-phase flux switching motor(FSM)with an asymmetrical rotor.Base on the proposed winding control method,the asymmetrical rotor enables the motor to generate continuous positive torque for positive rotation,and relatively small resistance torque for negative rotation.An initial iteration coefficient and variable iteration coefficient optimized scheme was proposed based on the characteristics of the hardware circuit,thereby forming the model-free strategy.A series of prototype experiments was carried out.Experimental results verify the effectiveness and practicability of the proposed ILC strategy.展开更多
In the digital age, the data exchanged within a company is a wealth of knowledge. The survival, growth and influence of a company in the short, medium and long term depend on it. Indeed, it is the lifeblood of any mod...In the digital age, the data exchanged within a company is a wealth of knowledge. The survival, growth and influence of a company in the short, medium and long term depend on it. Indeed, it is the lifeblood of any modern company. A companys operational and historical data contains strategic and operational knowledge of ever-increasing added value. The emergence of a new paradigm: big data. Today, the value of the data scattered throughout this mother of knowledge is calculated in billions of dollars, depending on its size, scope and area of intervention. With the rise of computer networks and distributed systems, the threats to these sensitive resources have steadily increased, jeopardizing the existence of the company itself by drying up production and losing the interest of customers and suppliers. These threats range from sabotage to bankruptcy. For several decades now, most companies have been using encryption algorithms to protect and secure their information systems against the threats and dangers posed by the inherent vulnerabilities of their infrastructure and the current economic climate. This vulnerability requires companies to make the right choice of algorithms to implement in their management systems. For this reason, the present work aims to carry out a comparative study of the reliability and effectiveness of symmetrical and asymmetrical cryptosystems, in order to identify one or more suitable for securing academic data in the DRC. The analysis of the robustness of commonly used symmetric and asymmetric cryptosystems will be the subject of simulations in this article.展开更多
This study provides a comprehensive analysis of collision and impact problems’ numerical solutions, focusing ongeometric, contact, and material nonlinearities, all essential in solving large deformation problems duri...This study provides a comprehensive analysis of collision and impact problems’ numerical solutions, focusing ongeometric, contact, and material nonlinearities, all essential in solving large deformation problems during a collision.The initial discussion revolves around the stress and strain of large deformation during a collision, followedby explanations of the fundamental finite element solution method for addressing such issues. The hourglassmode’s control methods, such as single-point reduced integration and contact-collision algorithms are detailedand implemented within the finite element framework. The paper further investigates the dynamic responseand failure modes of Reinforced Concrete (RC) members under asymmetrical impact using a 3D discrete modelin ABAQUS that treats steel bars and concrete connections as bond slips. The model’s validity was confirmedthrough comparisons with the node-sharing algorithm and system energy relations. Experimental parameterswere varied, including the rigid hammer’s mass and initial velocity, concrete strength, and longitudinal and stirrupreinforcement ratios. Findings indicated that increased hammer mass and velocity escalated RC member damage,while increased reinforcement ratios improved impact resistance. Contrarily, increased concrete strength did notsignificantly reduce lateral displacement when considering strain rate effects. The study also explores materialnonlinearity, examining different materials’ responses to collision-induced forces and stresses, demonstratedthrough an elastic rod impact case study. The paper proposes a damage criterion based on the residual axialload-bearing capacity for assessing damage under the asymmetrical impact, showing a correlation betweendamage degree hammer mass and initial velocity. The results, validated through comparison with theoreticaland analytical solutions, verify the ABAQUS program’s accuracy and reliability in analyzing impact problems,offering valuable insights into collision and impact problems’ nonlinearities and practical strategies for enhancingRC structures’ resilience under dynamic stress.展开更多
文摘This paper proposes and implements a model-free open-loop iterative learning control(ILC)strategy to realize the speed control of the single-phase flux switching motor(FSM)with an asymmetrical rotor.Base on the proposed winding control method,the asymmetrical rotor enables the motor to generate continuous positive torque for positive rotation,and relatively small resistance torque for negative rotation.An initial iteration coefficient and variable iteration coefficient optimized scheme was proposed based on the characteristics of the hardware circuit,thereby forming the model-free strategy.A series of prototype experiments was carried out.Experimental results verify the effectiveness and practicability of the proposed ILC strategy.
文摘In the digital age, the data exchanged within a company is a wealth of knowledge. The survival, growth and influence of a company in the short, medium and long term depend on it. Indeed, it is the lifeblood of any modern company. A companys operational and historical data contains strategic and operational knowledge of ever-increasing added value. The emergence of a new paradigm: big data. Today, the value of the data scattered throughout this mother of knowledge is calculated in billions of dollars, depending on its size, scope and area of intervention. With the rise of computer networks and distributed systems, the threats to these sensitive resources have steadily increased, jeopardizing the existence of the company itself by drying up production and losing the interest of customers and suppliers. These threats range from sabotage to bankruptcy. For several decades now, most companies have been using encryption algorithms to protect and secure their information systems against the threats and dangers posed by the inherent vulnerabilities of their infrastructure and the current economic climate. This vulnerability requires companies to make the right choice of algorithms to implement in their management systems. For this reason, the present work aims to carry out a comparative study of the reliability and effectiveness of symmetrical and asymmetrical cryptosystems, in order to identify one or more suitable for securing academic data in the DRC. The analysis of the robustness of commonly used symmetric and asymmetric cryptosystems will be the subject of simulations in this article.
基金the authority of the National Natural Science Foundation of China(Grant Nos.52178168 and 51378427)for financing this research work and several ongoing research projects related to structural impact performance.
文摘This study provides a comprehensive analysis of collision and impact problems’ numerical solutions, focusing ongeometric, contact, and material nonlinearities, all essential in solving large deformation problems during a collision.The initial discussion revolves around the stress and strain of large deformation during a collision, followedby explanations of the fundamental finite element solution method for addressing such issues. The hourglassmode’s control methods, such as single-point reduced integration and contact-collision algorithms are detailedand implemented within the finite element framework. The paper further investigates the dynamic responseand failure modes of Reinforced Concrete (RC) members under asymmetrical impact using a 3D discrete modelin ABAQUS that treats steel bars and concrete connections as bond slips. The model’s validity was confirmedthrough comparisons with the node-sharing algorithm and system energy relations. Experimental parameterswere varied, including the rigid hammer’s mass and initial velocity, concrete strength, and longitudinal and stirrupreinforcement ratios. Findings indicated that increased hammer mass and velocity escalated RC member damage,while increased reinforcement ratios improved impact resistance. Contrarily, increased concrete strength did notsignificantly reduce lateral displacement when considering strain rate effects. The study also explores materialnonlinearity, examining different materials’ responses to collision-induced forces and stresses, demonstratedthrough an elastic rod impact case study. The paper proposes a damage criterion based on the residual axialload-bearing capacity for assessing damage under the asymmetrical impact, showing a correlation betweendamage degree hammer mass and initial velocity. The results, validated through comparison with theoreticaland analytical solutions, verify the ABAQUS program’s accuracy and reliability in analyzing impact problems,offering valuable insights into collision and impact problems’ nonlinearities and practical strategies for enhancingRC structures’ resilience under dynamic stress.