期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A novel implementation algorithm of asymptotic homogenization for predicting the effective coefficient of thermal expansion of periodic composite materials 被引量:6
1
作者 Yongcun Zhang Shipeng Shang Shutian Liu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2017年第2期368-381,共14页
Asymptotic homogenization (AH) is a general method for predicting the effective coefficient of thermal expansion (CTE) of periodic composites. It has a rigorous mathematical foundation and can give an accurate solutio... Asymptotic homogenization (AH) is a general method for predicting the effective coefficient of thermal expansion (CTE) of periodic composites. It has a rigorous mathematical foundation and can give an accurate solution if the macrostructure is large enough to comprise an infinite number of unit cells. In this paper, a novel implementation algorithm of asymptotic homogenization (NIAH) is developed to calculate the effective CTE of periodic composite materials. Compared with the previous implementation of AH, there are two obvious advantages. One is its implementation as simple as representative volume element (RVE). The new algorithm can be executed easily using commercial finite element analysis (FEA) software as a black box. The detailed process of the new implementation of AH has been provided. The other is that NIAH can simultaneously use more than one element type to discretize a unit cell, which can save much computational cost in predicting the CTE of a complex structure. Several examples are carried out to demonstrate the effectiveness of the new implementation. This work is expected to greatly promote the widespread use of AH in predicting the CTE of periodic composite materials. 展开更多
关键词 asymptotic homogenization method Coefficient of thermal expansion Periodic composite material Finite element method
下载PDF
Semi-analytical finite element method applied for characterizing micropolar fibrous composites
2
作者 J.A.OTERO Y.ESPINOSA-ALMEYDA2, +1 位作者 R.RODRIGUEZ-RAMOS J.MERODIO 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第12期2147-2164,共18页
A semi-analytical finite element method(SAFEM),based on the two-scale asymptotic homogenization method(AHM)and the finite element method(FEM),is implemented to obtain the effective properties of two-phase fiber-reinfo... A semi-analytical finite element method(SAFEM),based on the two-scale asymptotic homogenization method(AHM)and the finite element method(FEM),is implemented to obtain the effective properties of two-phase fiber-reinforced composites(FRCs).The fibers are periodically distributed and unidirectionally aligned in a homogeneous matrix.This framework addresses the static linear elastic micropolar problem through partial differential equations,subject to boundary conditions and perfect interface contact conditions.The mathematical formulation of the local problems and the effective coefficients are presented by the AHM.The local problems obtained from the AHM are solved by the FEM,which is denoted as the SAFEM.The numerical results are provided,and the accuracy of the solutions is analyzed,indicating that the formulas and results obtained with the SAFEM may serve as the reference points for validating the outcomes of experimental and numerical computations. 展开更多
关键词 semi-analytical approach fiber-reinforced composite(FRC) effective property finite element method(FEM) asymptotic homogenization method(AHM) micropolar elasticity
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部