The control strategy for asynchronized turbogenerators (ASTGs) was studied by using two-axis equations. Simulation of the process of an asynchronized turbogenerator with faults of d or q axis or d and q axes in the ex...The control strategy for asynchronized turbogenerators (ASTGs) was studied by using two-axis equations. Simulation of the process of an asynchronized turbogenerator with faults of d or q axis or d and q axes in the excitation system was carried out with the simulating models including the model of the reverse thyristors in the excitation system established by Saber software. The simulation results show that at the loss of excitation at both windings or one winding of the rotor, the ASTGs can be automatically driven into an asynchronous or single axis excitation operation mode without a power unit tripping, and the characteristics for ASTGs with faults in the excitation system appear in good order.展开更多
The stability analysis of a finite Stokes layer is of practical importance in flow control. In the present work, the instantaneous stability of a finite Stokes layer with layer interactions is studied via a linear sta...The stability analysis of a finite Stokes layer is of practical importance in flow control. In the present work, the instantaneous stability of a finite Stokes layer with layer interactions is studied via a linear stability analysis of the frozen phases of the base flow. The oscillations of two plates can have different velocity amplitudes, initial phases, and frequencies. The effects of the Stokes-layer interactions on the stability when two plates oscillate synchronously are analyzed. The growth rates of two most unstable modes when δ < 0.12 are almost equal, and δ = δ*/h*, where δ*and h*are the Stokes-layer thickness and the half height of the channel, respectively. However, their vorticities are different. The vorticity of the most unstable mode is symmetric, while the other is asymmetric. The Stokes-layer interactions have a destabilizing effect on the most unstable mode when δ < 0.68, and have a stabilizing effect when δ > 0.68. However, the interactions always have a stabilizing effect on the other unstable mode. It is explained that one of the two unstable modes has much higher dissipation than the other one when the Stokes-layer interactions are strong. We also find that the stability of the Stokes layer is closely related to the inflectional points of the base-flow velocity profile. The effects of inconsistent velocity-amplitude, initial phase, and frequency of the oscillations on the stability are analyzed. The energy of the most unstable eigenvector is mainly distributed near the plate of higher velocity amplitude or higher oscillation frequency. The effects of the initial phase difference are complicated because the base-flow velocity is extremely sensitive to the initial phase.展开更多
This paper revisits the problem of bumpless transfer control(BTC) for discrete-time nondeterministic switched linear systems. The general case of asynchronous switching is considered for the first time in the field of...This paper revisits the problem of bumpless transfer control(BTC) for discrete-time nondeterministic switched linear systems. The general case of asynchronous switching is considered for the first time in the field of BTC for switched systems. A new approach called interpolated bumpless transfer control(IBTC) is proposed, where the bumpless transfer controllers are formulated with the combination of the two adjacent modedependent controller gains, and are interpolated for finite steps once the switching is detected. In contrast with the existing approaches, IBTC does not necessarily run through the full interval of subsystems, as well as possesses the time-varying controller gains(with more flexibility and less conservatism) achieved from a control synthesis allowing for the stability and other performance of the whole switched system. Sufficient conditions ensuring stability and H_(∞) performance of the underlying system by IBTC are developed, and numerical examples verify the theoretical findings.展开更多
In vehicle edge computing(VEC),asynchronous federated learning(AFL)is used,where the edge receives a local model and updates the global model,effectively reducing the global aggregation latency.Due to different amount...In vehicle edge computing(VEC),asynchronous federated learning(AFL)is used,where the edge receives a local model and updates the global model,effectively reducing the global aggregation latency.Due to different amounts of local data,computing capabilities and locations of the vehicles,renewing the global model with same weight is inappropriate.The above factors will affect the local calculation time and upload time of the local model,and the vehicle may also be affected by Byzantine attacks,leading to the deterioration of the vehicle data.However,based on deep reinforcement learning(DRL),we can consider these factors comprehensively to eliminate vehicles with poor performance as much as possible and exclude vehicles that have suffered Byzantine attacks before AFL.At the same time,when aggregating AFL,we can focus on those vehicles with better performance to improve the accuracy and safety of the system.In this paper,we proposed a vehicle selection scheme based on DRL in VEC.In this scheme,vehicle’s mobility,channel conditions with temporal variations,computational resources with temporal variations,different data amount,transmission channel status of vehicles as well as Byzantine attacks were taken into account.Simulation results show that the proposed scheme effectively improves the safety and accuracy of the global model.展开更多
This paper presents an asynchronous output-feed-back control strategy of semi-Markovian systems via sliding mode-based learning technique.Compared with most literature results that require exact prior knowledge of sys...This paper presents an asynchronous output-feed-back control strategy of semi-Markovian systems via sliding mode-based learning technique.Compared with most literature results that require exact prior knowledge of system state and mode information,an asynchronous output-feedback sliding sur-face is adopted in the case of incompletely available state and non-synchronization phenomenon.The holonomic dynamics of the sliding mode are characterized by a descriptor system in which the switching surface is regarded as the fast subsystem and the system dynamics are viewed as the slow subsystem.Based upon the co-occurrence of two subsystems,the sufficient stochastic admissibility criterion of the holonomic dynamics is derived by utilizing the characteristics of cumulative distribution functions.Furthermore,a recursive learning controller is formulated to guarantee the reachability of the sliding manifold and realize the chattering reduction of the asynchronous switching and sliding motion.Finally,the proposed theoretical method is substantia-ted through two numerical simulations with the practical contin-uous stirred tank reactor and F-404 aircraft engine model,respectively.展开更多
This paper considers the frameasynchronous grant-free rateless multiple access(FAGF-RMA)scenario,where users can initiate access at any symbol time,using shared channel resources to transmit data to the base station.R...This paper considers the frameasynchronous grant-free rateless multiple access(FAGF-RMA)scenario,where users can initiate access at any symbol time,using shared channel resources to transmit data to the base station.Rateless coding is introduced to enhance the reliability of the system.Previous literature has shown that FA-GFRMA can achieve lower access delay than framesynchronous grant-free rateless multiple access(FSGF-RMA),with extreme reliability enabled by rateless coding.To support FA-GF-RMA in more practical scenarios,a joint activity and data detection(JADD)scheme is proposed.Exploiting the feature of sporadic traffic,approximate message passing(AMP)is exploited for transmission signal matrix estimation.Then,to determine the packet start points,a maximum posterior probability(MAP)estimation problem is solved based on the recovered transmitted signals,leveraging the intrinsic power pattern in the codeword.An iterative power-pattern-aided AMP algorithm is devised to enhance the estimation performance of AMP.Simulation results verify that the proposed solution achieves a delay performance that is comparable to the performance limit of FA-GF-RMA.展开更多
The launch of the carbon-allowance trading market has changed the cost structure of the power industry.There is an asynchronous coupling mechanism between the carbon-allowance-trading market and the day-ahead power-sy...The launch of the carbon-allowance trading market has changed the cost structure of the power industry.There is an asynchronous coupling mechanism between the carbon-allowance-trading market and the day-ahead power-system dispatch.In this study,a data-driven model of the uncertainty in the annual carbon price was created.Subsequently,a collaborative,robust dispatch model was constructed considering the annual uncertainty of the carbon price and the daily uncertainty of renewable-energy generation.The model is solved using the column-and-constraint generation algorithm.An operation and cost model of a carbon-capture power plant(CCPP)that couples the carbon market and the economic operation of the power system is also established.The critical,profitable conditions for the economic operation of the CCPP were derived.Case studies demonstrated that the proposed low-carbon,robust dispatch model reduced carbon emissions by 2.67%compared with the traditional,economic,dispatch method.The total fuel cost of generation decreases with decreasing,conservative,carbon-price-uncertainty levels,while total carbon emissions continue to increase.When the carbon-quota coefficient decreases,the system dispatch tends to increase low-carbon unit output.This study can provide important guidance for carbon-market design and the low-carbon-dispatch selection strategies.展开更多
The harmonics that appear in the squirrel cage asynchronous machine have been discussed in great detail in the literature for a long time. However, the systematization of the phenomenon is still pending, so we made an...The harmonics that appear in the squirrel cage asynchronous machine have been discussed in great detail in the literature for a long time. However, the systematization of the phenomenon is still pending, so we made an attempt to fill this gap in the previous parts of our study by elaborating formulas for calculation of parasitic torques. It was a general demand among those who work in this field towards the author to verify his formulas with measurements. In the literature, it seems,only one detailed, purposeful series of measurements has been published so far, the purpose of which was to investigate the effect of the number of rotor slots on the torque-speed characteristic curve of the machine. The main goal of this study is to verify the correctness of the formulas by comparing them with the referred series of measurements. Relying on this, the expected synchronous parasitic torques were developed for the frequently used rotor slot numbers-as a design guide for the engineer.Thus, together with our complete table for radial magnetic pull published in our previous work, the designer has all the principles, data and formulas available for the right number of rotor slots for his given machine and for the drive system. This brings this series of papers to an end.展开更多
BACKGROUND With the increasing incidence of total joint arthroplasty(TJA),there is a desire to reduce peri-operative complications and resource utilization.As degenerative conditions progress in multiple joints,many p...BACKGROUND With the increasing incidence of total joint arthroplasty(TJA),there is a desire to reduce peri-operative complications and resource utilization.As degenerative conditions progress in multiple joints,many patients undergo multiple proce-dures.AIM To determine if both physicians and patients learn from the patient’s initial arth-roplasty,resulting in improved outcomes following the second procedure.METHODS The institutional database was retrospectively queried for primary total hip arth-roplasty(THA)and total knee arthroplasty(TKA).Patients with only unilateral THA or TKA,and patients undergoing same-day bilateral TJA,were excluded.Patient demographics,comorbidities,and implant sizes were collected at the time of each procedure and patients were stratified by first vs second surgery.Outcome metrics evaluated included operative time,length of stay(LOS),disposition,90-d readmissions and emergency department(ED)visits.RESULTS A total of 642 patients,including 364 undergoing staged bilateral TKA and 278 undergoing bilateral THA,were analyzed.There was no significant difference in demographics or comorbidities between the first and second procedure,which were separated by a mean of 285 d.For THA and TKA,LOS was significantly less for the second surgery,with 66%of patients having a shorter hospitalization(P<0.001).THA patients had significantly decreased operative time only when the same sized implant was utilized(P=0.025).The vast majority(93.3%)of patients were discharged to the same type of location following their second surgery.However,when a change in disposition was present from the first surgery,patients were significantly more likely to be discharged to home after the second procedure(P=0.033).There was no difference between procedures for post-operative readmissions(P=0.438)or ED visits(P=0.915).CONCLUSION After gaining valuable experience recovering from the initial surgery,a patient’s perioperative outcomes are improved for their second TJA.This may be the result of increased confidence and decreased anxiety,and it supports the theory that enhanced patient education pre-operatively may improve outcomes.For the surgical team,the second procedure of a staged THA is more efficient,although this finding did not hold for TKA.展开更多
First-Input-First-Output (FIFO) buffers are extensively used in contemporary digital processors and System-on-Chips (SoC). There are synchronous FIFOs and asycnrhonous FIFOs. And different sized FIFOs should be implem...First-Input-First-Output (FIFO) buffers are extensively used in contemporary digital processors and System-on-Chips (SoC). There are synchronous FIFOs and asycnrhonous FIFOs. And different sized FIFOs should be implemented in different ways. FIFOs are used not only for the pipeline design within a processor, for the inter-processor communication networks, for example Network-on-Chips (NoCs), but also for the peripherals and the clock domain crossing at the whole SoC level. In this paper, we review the interface, the circuit implementation, and the various usages of FIFOs in various levels of the digital design. We can find that the usage of FIFOs could greatly facilitate the signal storage, signal decoupling, signal transfer, power domain separation and power domain crossing in digital systems. We hope that more attentions are paid to the usages of synchronous and asynchronous FIFOs and more sophististicated usages are discovered by the digital design communities.展开更多
Network-assisted full duplex(NAFD)cellfree(CF)massive MIMO has drawn increasing attention in 6G evolvement.In this paper,we build an NAFD CF system in which the users and access points(APs)can flexibly select their du...Network-assisted full duplex(NAFD)cellfree(CF)massive MIMO has drawn increasing attention in 6G evolvement.In this paper,we build an NAFD CF system in which the users and access points(APs)can flexibly select their duplex modes to increase the link spectral efficiency.Then we formulate a joint flexible duplexing and power allocation problem to balance the user fairness and system spectral efficiency.We further transform the problem into a probability optimization to accommodate the shortterm communications.In contrast with the instant performance optimization,the probability optimization belongs to a sequential decision making problem,and thus we reformulate it as a Markov Decision Process(MDP).We utilizes deep reinforcement learning(DRL)algorithm to search the solution from a large state-action space,and propose an asynchronous advantage actor-critic(A3C)-based scheme to reduce the chance of converging to the suboptimal policy.Simulation results demonstrate that the A3C-based scheme is superior to the baseline schemes in term of the complexity,accumulated log spectral efficiency,and stability.展开更多
Weighted vertex cover(WVC)is one of the most important combinatorial optimization problems.In this paper,we provide a new game optimization to achieve efficiency and time of solutions for the WVC problem of weighted n...Weighted vertex cover(WVC)is one of the most important combinatorial optimization problems.In this paper,we provide a new game optimization to achieve efficiency and time of solutions for the WVC problem of weighted networks.We first model the WVC problem as a general game on weighted networks.Under the framework of a game,we newly define several cover states to describe the WVC problem.Moreover,we reveal the relationship among these cover states of the weighted network and the strict Nash equilibriums(SNEs)of the game.Then,we propose a game-based asynchronous algorithm(GAA),which can theoretically guarantee that all cover states of vertices converging in an SNE with polynomial time.Subsequently,we improve the GAA by adding 2-hop and 3-hop adjustment mechanisms,termed the improved game-based asynchronous algorithm(IGAA),in which we prove that it can obtain a better solution to the WVC problem than using a the GAA.Finally,numerical simulations demonstrate that the proposed IGAA can obtain a better approximate solution in promising computation time compared with the existing representative algorithms.展开更多
Nowadays,smart wearable devices are used widely in the Social Internet of Things(IoT),which record human physiological data in real time.To protect the data privacy of smart devices,researchers pay more attention to f...Nowadays,smart wearable devices are used widely in the Social Internet of Things(IoT),which record human physiological data in real time.To protect the data privacy of smart devices,researchers pay more attention to federated learning.Although the data leakage problem is somewhat solved,a new challenge has emerged.Asynchronous federated learning shortens the convergence time,while it has time delay and data heterogeneity problems.Both of the two problems harm the accuracy.To overcome these issues,we propose an asynchronous federated learning scheme based on double compensation to solve the problem of time delay and data heterogeneity problems.The scheme improves the Delay Compensated Asynchronous Stochastic Gradient Descent(DC-ASGD)algorithm based on the second-order Taylor expansion as the delay compensation.It adds the FedProx operator to the objective function as the heterogeneity compensation.Besides,the proposed scheme motivates the federated learning process by adjusting the importance of the participants and the central server.We conduct multiple sets of experiments in both conventional and heterogeneous scenarios.The experimental results show that our scheme improves the accuracy by about 5%while keeping the complexity constant.We can find that our scheme converges more smoothly during training and adapts better in heterogeneous environments through numerical experiments.The proposed double-compensation-based federated learning scheme is highly accurate,flexible in terms of participants and smooth the training process.Hence it is deemed suitable for data privacy protection of smart wearable devices.展开更多
The magnetic field generated in the air gap of the cage asynchronous machine and the harmonics of the magnetomotive forces creating that magnetic field, as well as the related differential leakage, attenuation, asynch...The magnetic field generated in the air gap of the cage asynchronous machine and the harmonics of the magnetomotive forces creating that magnetic field, as well as the related differential leakage, attenuation, asynchronous parasitic torques have been discussed in great detail in the literature, but always separately, for a long time. However, systematization of the phenomenon still awaits. Therefore, it is worth summarizing the completeness of the phenomena in a single study – with a new approach at the same time-in order to reveal the relationships between them. The role of rotor slot number is emphasized much more than before. An existing, commonly used, but still impractical basic figure has been modified to more clearly demonstrate the response of the rotor for the harmonics of the stator. The need to treat differential leakage, asynchronous parasitic torques and attenuation together will be demonstrated: new formula for asynchronous parasitic torque is derived;the long-used characteristic curves for differential leakage and attenuation used separately so far was merged into one, correct curve in order to provide a correct design guide for the engineers.展开更多
In this paper we address the issue of output-feedback robust control for a class of feedforward nonlinear systems.Essentially different from the related literature,the feedback/input signals are corrupted by additive ...In this paper we address the issue of output-feedback robust control for a class of feedforward nonlinear systems.Essentially different from the related literature,the feedback/input signals are corrupted by additive noises and can only be transmitted intermittently due to the consideration of event-triggered communications,which bring new challenges to the control design.With the aid of matrix pencil based design procedures,regulating the output to near zero is globally solved by a non-conservative dynamic low-gain controller which requires only an a priori information on the upper-bound of the growth rate of nonlinearities.Theoretical analysis shows that the closed-loop system is input-to-state stable with respect to the sampled errors and additive noise.In particular,the observer and controller designs have a dual architecture with a single dynamic scaling parameter whose update law can be obtained by calculating the generalized eigenvalues of matrix pencils offline,which has an advantage in the sense of improving the system convergence rate.展开更多
We study distributed optimization problems over a directed network,where nodes aim to minimize the sum of local objective functions via directed communications with neighbors.Many algorithms are designed to solve it f...We study distributed optimization problems over a directed network,where nodes aim to minimize the sum of local objective functions via directed communications with neighbors.Many algorithms are designed to solve it for synchronized or randomly activated implementation,which may create deadlocks in practice.In sharp contrast,we propose a fully asynchronous push-pull gradient(APPG) algorithm,where each node updates without waiting for any other node by using possibly delayed information from neighbors.Then,we construct two novel augmented networks to analyze asynchrony and delays,and quantify its convergence rate from the worst-case point of view.Particularly,all nodes of APPG converge to the same optimal solution at a linear rate of O(λ^(k)) if local functions have Lipschitz-continuous gradients and their sum satisfies the Polyak-?ojasiewicz condition(convexity is not required),where λ ∈(0,1) is explicitly given and the virtual counter k increases by one when any node updates.Finally,the advantage of APPG over the synchronous counterpart and its linear speedup efficiency are numerically validated via a logistic regression problem.展开更多
The interactions between players of the prisoner's dilemma game are inferred using observed game data.All participants play the game with their counterparts and gain corresponding rewards during each round of the ...The interactions between players of the prisoner's dilemma game are inferred using observed game data.All participants play the game with their counterparts and gain corresponding rewards during each round of the game.The strategies of each player are updated asynchronously during the game.Two inference methods of the interactions between players are derived with naive mean-field(n MF)approximation and maximum log-likelihood estimation(MLE),respectively.Two methods are tested numerically also for fully connected asymmetric Sherrington-Kirkpatrick models,varying the data length,asymmetric degree,payoff,and system noise(coupling strength).We find that the mean square error of reconstruction for the MLE method is inversely proportional to the data length and typically half(benefit from the extra information of update times)of that by n MF.Both methods are robust to the asymmetric degree but work better for large payoffs.Compared with MLE,n MF is more sensitive to the strength of couplings and prefers weak couplings.展开更多
Asynchronous federated learning(AsynFL)can effectivelymitigate the impact of heterogeneity of edge nodes on joint training while satisfying participant user privacy protection and data security.However,the frequent ex...Asynchronous federated learning(AsynFL)can effectivelymitigate the impact of heterogeneity of edge nodes on joint training while satisfying participant user privacy protection and data security.However,the frequent exchange of massive data can lead to excess communication overhead between edge and central nodes regardless of whether the federated learning(FL)algorithm uses synchronous or asynchronous aggregation.Therefore,there is an urgent need for a method that can simultaneously take into account device heterogeneity and edge node energy consumption reduction.This paper proposes a novel Fixed-point Asynchronous Federated Learning(FixedAsynFL)algorithm,which could mitigate the resource consumption caused by frequent data communication while alleviating the effect of device heterogeneity.FixedAsynFL uses fixed-point quantization to compress the local and global models in AsynFL.In order to balance energy consumption and learning accuracy,this paper proposed a quantization scale selection mechanism.This paper examines the mathematical relationship between the quantization scale and energy consumption of the computation/communication process in the FixedAsynFL.Based on considering the upper bound of quantization noise,this paper optimizes the quantization scale by minimizing communication and computation consumption.This paper performs pertinent experiments on the MNIST dataset with several edge nodes of different computing efficiency.The results show that the FixedAsynFL algorithm with an 8-bit quantization can significantly reduce the communication data size by 81.3%and save the computation energy in the training phase by 74.9%without significant loss of accuracy.According to the experimental results,we can see that the proposed AsynFixedFL algorithm can effectively solve the problem of device heterogeneity and energy consumption limitation of edge nodes.展开更多
Terahertz time-domain spectroscopy(THz-TDS)system,as a new means of spectral analysis and detection,plays an increasingly pivotal role in basic scientific research.However,owing to the long scanning time of the tradit...Terahertz time-domain spectroscopy(THz-TDS)system,as a new means of spectral analysis and detection,plays an increasingly pivotal role in basic scientific research.However,owing to the long scanning time of the traditional THz-TDS system and the complex control of the asynchronous optical scanning(ASOPS)system,which requires frequent calibration,we combine traditional THz-TDS and ASOPS systems to form a composite system and propose an all-fiber trigger signal generation method based on the time overlapping interference signal generated by the collinear motion of two laser pulses.Finally,the time-domain and frequency-domain spectra are obtained by using two independent systems in the integrated systems.It is found that the full width at half maximum(FWHM)of the time-domain spectra and the spectral width of the frequency-domain spectra are almost the same,but the sampling speed of the ASOPS system is significantly faster than that of the traditional THz-TDS system,which conduces to the study of the transient characteristics of substances.展开更多
The lack of reactive power in offshore wind farms will affect the voltage stability and power transmission quality of wind farms.To improve the voltage stability and reactive power economy of wind farms,the improved p...The lack of reactive power in offshore wind farms will affect the voltage stability and power transmission quality of wind farms.To improve the voltage stability and reactive power economy of wind farms,the improved particle swarmoptimization is used to optimize the reactive power planning in wind farms.First,the power flow of offshore wind farms is modeled,analyzed and calculated.To improve the global search ability and local optimization ability of particle swarm optimization,the improved particle swarm optimization adopts the adaptive inertia weight and asynchronous learning factor.Taking the minimum active power loss of the offshore wind farms as the objective function,the installation location of the reactive power compensation device is compared according to the node voltage amplitude and the actual engineering needs.Finally,a reactive power optimizationmodel based on Static Var Compensator is established inMATLAB to consider the optimal compensation capacity,network loss,convergence speed and voltage amplitude enhancement effect of SVC.Comparing the compensation methods in several different locations,the compensation scheme with the best reactive power optimization effect is determined.Meanwhile,the optimization results of the standard particle swarm optimization and the improved particle swarm optimization are compared to verify the superiority of the proposed improved algorithm.展开更多
文摘The control strategy for asynchronized turbogenerators (ASTGs) was studied by using two-axis equations. Simulation of the process of an asynchronized turbogenerator with faults of d or q axis or d and q axes in the excitation system was carried out with the simulating models including the model of the reverse thyristors in the excitation system established by Saber software. The simulation results show that at the loss of excitation at both windings or one winding of the rotor, the ASTGs can be automatically driven into an asynchronous or single axis excitation operation mode without a power unit tripping, and the characteristics for ASTGs with faults in the excitation system appear in good order.
基金Project supported by the National Natural Science Foundation of China (No. 11402211)。
文摘The stability analysis of a finite Stokes layer is of practical importance in flow control. In the present work, the instantaneous stability of a finite Stokes layer with layer interactions is studied via a linear stability analysis of the frozen phases of the base flow. The oscillations of two plates can have different velocity amplitudes, initial phases, and frequencies. The effects of the Stokes-layer interactions on the stability when two plates oscillate synchronously are analyzed. The growth rates of two most unstable modes when δ < 0.12 are almost equal, and δ = δ*/h*, where δ*and h*are the Stokes-layer thickness and the half height of the channel, respectively. However, their vorticities are different. The vorticity of the most unstable mode is symmetric, while the other is asymmetric. The Stokes-layer interactions have a destabilizing effect on the most unstable mode when δ < 0.68, and have a stabilizing effect when δ > 0.68. However, the interactions always have a stabilizing effect on the other unstable mode. It is explained that one of the two unstable modes has much higher dissipation than the other one when the Stokes-layer interactions are strong. We also find that the stability of the Stokes layer is closely related to the inflectional points of the base-flow velocity profile. The effects of inconsistent velocity-amplitude, initial phase, and frequency of the oscillations on the stability are analyzed. The energy of the most unstable eigenvector is mainly distributed near the plate of higher velocity amplitude or higher oscillation frequency. The effects of the initial phase difference are complicated because the base-flow velocity is extremely sensitive to the initial phase.
基金partially supported by the National Natural Science Foundation of China (62225305,12072088)the Fundamental Research Funds for the Central Universities,China (HIT.BRET.2022004,HIT.OCEF.2022047,JCKY2022603C016)China Scholarship Council (202306120113)。
文摘This paper revisits the problem of bumpless transfer control(BTC) for discrete-time nondeterministic switched linear systems. The general case of asynchronous switching is considered for the first time in the field of BTC for switched systems. A new approach called interpolated bumpless transfer control(IBTC) is proposed, where the bumpless transfer controllers are formulated with the combination of the two adjacent modedependent controller gains, and are interpolated for finite steps once the switching is detected. In contrast with the existing approaches, IBTC does not necessarily run through the full interval of subsystems, as well as possesses the time-varying controller gains(with more flexibility and less conservatism) achieved from a control synthesis allowing for the stability and other performance of the whole switched system. Sufficient conditions ensuring stability and H_(∞) performance of the underlying system by IBTC are developed, and numerical examples verify the theoretical findings.
基金supported in part by the National Natural Science Foundation of China(No.61701197)in part by the National Key Research and Development Program of China(No.2021YFA1000500(4))in part by the 111 Project(No.B23008).
文摘In vehicle edge computing(VEC),asynchronous federated learning(AFL)is used,where the edge receives a local model and updates the global model,effectively reducing the global aggregation latency.Due to different amounts of local data,computing capabilities and locations of the vehicles,renewing the global model with same weight is inappropriate.The above factors will affect the local calculation time and upload time of the local model,and the vehicle may also be affected by Byzantine attacks,leading to the deterioration of the vehicle data.However,based on deep reinforcement learning(DRL),we can consider these factors comprehensively to eliminate vehicles with poor performance as much as possible and exclude vehicles that have suffered Byzantine attacks before AFL.At the same time,when aggregating AFL,we can focus on those vehicles with better performance to improve the accuracy and safety of the system.In this paper,we proposed a vehicle selection scheme based on DRL in VEC.In this scheme,vehicle’s mobility,channel conditions with temporal variations,computational resources with temporal variations,different data amount,transmission channel status of vehicles as well as Byzantine attacks were taken into account.Simulation results show that the proposed scheme effectively improves the safety and accuracy of the global model.
基金supported in part by the National Science Fund for Excellent Young Scholars of China(62222317)the National Science Foundation of China(62303492)+3 种基金the Major Science and Technology Projects in Hunan Province(2021GK1030)the Science and Technology Innovation Program of Hunan Province(2022WZ1001)the Key Research and Development Program of Hunan Province(2023GK2023)the Fundamental Research Funds for the Central Universities of Central South University(2024ZZTS0116)。
文摘This paper presents an asynchronous output-feed-back control strategy of semi-Markovian systems via sliding mode-based learning technique.Compared with most literature results that require exact prior knowledge of system state and mode information,an asynchronous output-feedback sliding sur-face is adopted in the case of incompletely available state and non-synchronization phenomenon.The holonomic dynamics of the sliding mode are characterized by a descriptor system in which the switching surface is regarded as the fast subsystem and the system dynamics are viewed as the slow subsystem.Based upon the co-occurrence of two subsystems,the sufficient stochastic admissibility criterion of the holonomic dynamics is derived by utilizing the characteristics of cumulative distribution functions.Furthermore,a recursive learning controller is formulated to guarantee the reachability of the sliding manifold and realize the chattering reduction of the asynchronous switching and sliding motion.Finally,the proposed theoretical method is substantia-ted through two numerical simulations with the practical contin-uous stirred tank reactor and F-404 aircraft engine model,respectively.
基金supported by the projects as follows,Key Research and Development Program of China(2018YFB1801102)the Key Research and Development Program of China(2020YFB1806603)+3 种基金Fundamental Research Funds for the Central Universities under Grant 2242022k60006Tsinghua University-China Mobile Communications Group Co.,Ltd.Joint Institute,Civil Aerospace Technology Project(D040202)National Natural Science Foundation of China(Grant No.92067206)TsinghuaQualcomm Joint Project,Tsinghua University Initiative Scientific Research Program(20193080005)。
文摘This paper considers the frameasynchronous grant-free rateless multiple access(FAGF-RMA)scenario,where users can initiate access at any symbol time,using shared channel resources to transmit data to the base station.Rateless coding is introduced to enhance the reliability of the system.Previous literature has shown that FA-GFRMA can achieve lower access delay than framesynchronous grant-free rateless multiple access(FSGF-RMA),with extreme reliability enabled by rateless coding.To support FA-GF-RMA in more practical scenarios,a joint activity and data detection(JADD)scheme is proposed.Exploiting the feature of sporadic traffic,approximate message passing(AMP)is exploited for transmission signal matrix estimation.Then,to determine the packet start points,a maximum posterior probability(MAP)estimation problem is solved based on the recovered transmitted signals,leveraging the intrinsic power pattern in the codeword.An iterative power-pattern-aided AMP algorithm is devised to enhance the estimation performance of AMP.Simulation results verify that the proposed solution achieves a delay performance that is comparable to the performance limit of FA-GF-RMA.
基金supported by the Science and Technology Project of State Grid Liaoning Electric Power Co.,Ltd.(No.2023YF-82).
文摘The launch of the carbon-allowance trading market has changed the cost structure of the power industry.There is an asynchronous coupling mechanism between the carbon-allowance-trading market and the day-ahead power-system dispatch.In this study,a data-driven model of the uncertainty in the annual carbon price was created.Subsequently,a collaborative,robust dispatch model was constructed considering the annual uncertainty of the carbon price and the daily uncertainty of renewable-energy generation.The model is solved using the column-and-constraint generation algorithm.An operation and cost model of a carbon-capture power plant(CCPP)that couples the carbon market and the economic operation of the power system is also established.The critical,profitable conditions for the economic operation of the CCPP were derived.Case studies demonstrated that the proposed low-carbon,robust dispatch model reduced carbon emissions by 2.67%compared with the traditional,economic,dispatch method.The total fuel cost of generation decreases with decreasing,conservative,carbon-price-uncertainty levels,while total carbon emissions continue to increase.When the carbon-quota coefficient decreases,the system dispatch tends to increase low-carbon unit output.This study can provide important guidance for carbon-market design and the low-carbon-dispatch selection strategies.
文摘The harmonics that appear in the squirrel cage asynchronous machine have been discussed in great detail in the literature for a long time. However, the systematization of the phenomenon is still pending, so we made an attempt to fill this gap in the previous parts of our study by elaborating formulas for calculation of parasitic torques. It was a general demand among those who work in this field towards the author to verify his formulas with measurements. In the literature, it seems,only one detailed, purposeful series of measurements has been published so far, the purpose of which was to investigate the effect of the number of rotor slots on the torque-speed characteristic curve of the machine. The main goal of this study is to verify the correctness of the formulas by comparing them with the referred series of measurements. Relying on this, the expected synchronous parasitic torques were developed for the frequently used rotor slot numbers-as a design guide for the engineer.Thus, together with our complete table for radial magnetic pull published in our previous work, the designer has all the principles, data and formulas available for the right number of rotor slots for his given machine and for the drive system. This brings this series of papers to an end.
文摘BACKGROUND With the increasing incidence of total joint arthroplasty(TJA),there is a desire to reduce peri-operative complications and resource utilization.As degenerative conditions progress in multiple joints,many patients undergo multiple proce-dures.AIM To determine if both physicians and patients learn from the patient’s initial arth-roplasty,resulting in improved outcomes following the second procedure.METHODS The institutional database was retrospectively queried for primary total hip arth-roplasty(THA)and total knee arthroplasty(TKA).Patients with only unilateral THA or TKA,and patients undergoing same-day bilateral TJA,were excluded.Patient demographics,comorbidities,and implant sizes were collected at the time of each procedure and patients were stratified by first vs second surgery.Outcome metrics evaluated included operative time,length of stay(LOS),disposition,90-d readmissions and emergency department(ED)visits.RESULTS A total of 642 patients,including 364 undergoing staged bilateral TKA and 278 undergoing bilateral THA,were analyzed.There was no significant difference in demographics or comorbidities between the first and second procedure,which were separated by a mean of 285 d.For THA and TKA,LOS was significantly less for the second surgery,with 66%of patients having a shorter hospitalization(P<0.001).THA patients had significantly decreased operative time only when the same sized implant was utilized(P=0.025).The vast majority(93.3%)of patients were discharged to the same type of location following their second surgery.However,when a change in disposition was present from the first surgery,patients were significantly more likely to be discharged to home after the second procedure(P=0.033).There was no difference between procedures for post-operative readmissions(P=0.438)or ED visits(P=0.915).CONCLUSION After gaining valuable experience recovering from the initial surgery,a patient’s perioperative outcomes are improved for their second TJA.This may be the result of increased confidence and decreased anxiety,and it supports the theory that enhanced patient education pre-operatively may improve outcomes.For the surgical team,the second procedure of a staged THA is more efficient,although this finding did not hold for TKA.
文摘First-Input-First-Output (FIFO) buffers are extensively used in contemporary digital processors and System-on-Chips (SoC). There are synchronous FIFOs and asycnrhonous FIFOs. And different sized FIFOs should be implemented in different ways. FIFOs are used not only for the pipeline design within a processor, for the inter-processor communication networks, for example Network-on-Chips (NoCs), but also for the peripherals and the clock domain crossing at the whole SoC level. In this paper, we review the interface, the circuit implementation, and the various usages of FIFOs in various levels of the digital design. We can find that the usage of FIFOs could greatly facilitate the signal storage, signal decoupling, signal transfer, power domain separation and power domain crossing in digital systems. We hope that more attentions are paid to the usages of synchronous and asynchronous FIFOs and more sophististicated usages are discovered by the digital design communities.
基金supported by the National Key R&D Program of China under Grant 2020YFB1807204the BUPT Excellent Ph.D.Students Foundation under Grant CX2022306。
文摘Network-assisted full duplex(NAFD)cellfree(CF)massive MIMO has drawn increasing attention in 6G evolvement.In this paper,we build an NAFD CF system in which the users and access points(APs)can flexibly select their duplex modes to increase the link spectral efficiency.Then we formulate a joint flexible duplexing and power allocation problem to balance the user fairness and system spectral efficiency.We further transform the problem into a probability optimization to accommodate the shortterm communications.In contrast with the instant performance optimization,the probability optimization belongs to a sequential decision making problem,and thus we reformulate it as a Markov Decision Process(MDP).We utilizes deep reinforcement learning(DRL)algorithm to search the solution from a large state-action space,and propose an asynchronous advantage actor-critic(A3C)-based scheme to reduce the chance of converging to the suboptimal policy.Simulation results demonstrate that the A3C-based scheme is superior to the baseline schemes in term of the complexity,accumulated log spectral efficiency,and stability.
基金partly supported by the National Natural Science Foundation of China(61751303,U20A2068,11771013)the Zhejiang Provincial Natural Science Foundation of China(LD19A010001)the Fundamental Research Funds for the Central Universities。
文摘Weighted vertex cover(WVC)is one of the most important combinatorial optimization problems.In this paper,we provide a new game optimization to achieve efficiency and time of solutions for the WVC problem of weighted networks.We first model the WVC problem as a general game on weighted networks.Under the framework of a game,we newly define several cover states to describe the WVC problem.Moreover,we reveal the relationship among these cover states of the weighted network and the strict Nash equilibriums(SNEs)of the game.Then,we propose a game-based asynchronous algorithm(GAA),which can theoretically guarantee that all cover states of vertices converging in an SNE with polynomial time.Subsequently,we improve the GAA by adding 2-hop and 3-hop adjustment mechanisms,termed the improved game-based asynchronous algorithm(IGAA),in which we prove that it can obtain a better solution to the WVC problem than using a the GAA.Finally,numerical simulations demonstrate that the proposed IGAA can obtain a better approximate solution in promising computation time compared with the existing representative algorithms.
基金supported by the National Natural Science Foundation of China,No.61977006.
文摘Nowadays,smart wearable devices are used widely in the Social Internet of Things(IoT),which record human physiological data in real time.To protect the data privacy of smart devices,researchers pay more attention to federated learning.Although the data leakage problem is somewhat solved,a new challenge has emerged.Asynchronous federated learning shortens the convergence time,while it has time delay and data heterogeneity problems.Both of the two problems harm the accuracy.To overcome these issues,we propose an asynchronous federated learning scheme based on double compensation to solve the problem of time delay and data heterogeneity problems.The scheme improves the Delay Compensated Asynchronous Stochastic Gradient Descent(DC-ASGD)algorithm based on the second-order Taylor expansion as the delay compensation.It adds the FedProx operator to the objective function as the heterogeneity compensation.Besides,the proposed scheme motivates the federated learning process by adjusting the importance of the participants and the central server.We conduct multiple sets of experiments in both conventional and heterogeneous scenarios.The experimental results show that our scheme improves the accuracy by about 5%while keeping the complexity constant.We can find that our scheme converges more smoothly during training and adapts better in heterogeneous environments through numerical experiments.The proposed double-compensation-based federated learning scheme is highly accurate,flexible in terms of participants and smooth the training process.Hence it is deemed suitable for data privacy protection of smart wearable devices.
文摘The magnetic field generated in the air gap of the cage asynchronous machine and the harmonics of the magnetomotive forces creating that magnetic field, as well as the related differential leakage, attenuation, asynchronous parasitic torques have been discussed in great detail in the literature, but always separately, for a long time. However, systematization of the phenomenon still awaits. Therefore, it is worth summarizing the completeness of the phenomena in a single study – with a new approach at the same time-in order to reveal the relationships between them. The role of rotor slot number is emphasized much more than before. An existing, commonly used, but still impractical basic figure has been modified to more clearly demonstrate the response of the rotor for the harmonics of the stator. The need to treat differential leakage, asynchronous parasitic torques and attenuation together will be demonstrated: new formula for asynchronous parasitic torque is derived;the long-used characteristic curves for differential leakage and attenuation used separately so far was merged into one, correct curve in order to provide a correct design guide for the engineers.
基金supported in part by the Graduate Research and Innovation Foundation of Chongqing,China,under Grant CYB22065in part by the China Scholarship Council.
文摘In this paper we address the issue of output-feedback robust control for a class of feedforward nonlinear systems.Essentially different from the related literature,the feedback/input signals are corrupted by additive noises and can only be transmitted intermittently due to the consideration of event-triggered communications,which bring new challenges to the control design.With the aid of matrix pencil based design procedures,regulating the output to near zero is globally solved by a non-conservative dynamic low-gain controller which requires only an a priori information on the upper-bound of the growth rate of nonlinearities.Theoretical analysis shows that the closed-loop system is input-to-state stable with respect to the sampled errors and additive noise.In particular,the observer and controller designs have a dual architecture with a single dynamic scaling parameter whose update law can be obtained by calculating the generalized eigenvalues of matrix pencils offline,which has an advantage in the sense of improving the system convergence rate.
基金Supported by National Natural Science Foundation of China(62033006,62203254)。
文摘We study distributed optimization problems over a directed network,where nodes aim to minimize the sum of local objective functions via directed communications with neighbors.Many algorithms are designed to solve it for synchronized or randomly activated implementation,which may create deadlocks in practice.In sharp contrast,we propose a fully asynchronous push-pull gradient(APPG) algorithm,where each node updates without waiting for any other node by using possibly delayed information from neighbors.Then,we construct two novel augmented networks to analyze asynchrony and delays,and quantify its convergence rate from the worst-case point of view.Particularly,all nodes of APPG converge to the same optimal solution at a linear rate of O(λ^(k)) if local functions have Lipschitz-continuous gradients and their sum satisfies the Polyak-?ojasiewicz condition(convexity is not required),where λ ∈(0,1) is explicitly given and the virtual counter k increases by one when any node updates.Finally,the advantage of APPG over the synchronous counterpart and its linear speedup efficiency are numerically validated via a logistic regression problem.
基金supported by the National Natural Science Foundation of China(Grant Nos.11705079 and 11705279)the Scientific Research Foundation of Nanjing University of Posts and Telecommunications(Grant Nos.NY221101 and NY222134)the Science and Technology Innovation Training Program(Grant No.STITP 202210293044Z)。
文摘The interactions between players of the prisoner's dilemma game are inferred using observed game data.All participants play the game with their counterparts and gain corresponding rewards during each round of the game.The strategies of each player are updated asynchronously during the game.Two inference methods of the interactions between players are derived with naive mean-field(n MF)approximation and maximum log-likelihood estimation(MLE),respectively.Two methods are tested numerically also for fully connected asymmetric Sherrington-Kirkpatrick models,varying the data length,asymmetric degree,payoff,and system noise(coupling strength).We find that the mean square error of reconstruction for the MLE method is inversely proportional to the data length and typically half(benefit from the extra information of update times)of that by n MF.Both methods are robust to the asymmetric degree but work better for large payoffs.Compared with MLE,n MF is more sensitive to the strength of couplings and prefers weak couplings.
基金This work was funded by National Key R&D Program of China(Grant No.2020YFB0906003).
文摘Asynchronous federated learning(AsynFL)can effectivelymitigate the impact of heterogeneity of edge nodes on joint training while satisfying participant user privacy protection and data security.However,the frequent exchange of massive data can lead to excess communication overhead between edge and central nodes regardless of whether the federated learning(FL)algorithm uses synchronous or asynchronous aggregation.Therefore,there is an urgent need for a method that can simultaneously take into account device heterogeneity and edge node energy consumption reduction.This paper proposes a novel Fixed-point Asynchronous Federated Learning(FixedAsynFL)algorithm,which could mitigate the resource consumption caused by frequent data communication while alleviating the effect of device heterogeneity.FixedAsynFL uses fixed-point quantization to compress the local and global models in AsynFL.In order to balance energy consumption and learning accuracy,this paper proposed a quantization scale selection mechanism.This paper examines the mathematical relationship between the quantization scale and energy consumption of the computation/communication process in the FixedAsynFL.Based on considering the upper bound of quantization noise,this paper optimizes the quantization scale by minimizing communication and computation consumption.This paper performs pertinent experiments on the MNIST dataset with several edge nodes of different computing efficiency.The results show that the FixedAsynFL algorithm with an 8-bit quantization can significantly reduce the communication data size by 81.3%and save the computation energy in the training phase by 74.9%without significant loss of accuracy.According to the experimental results,we can see that the proposed AsynFixedFL algorithm can effectively solve the problem of device heterogeneity and energy consumption limitation of edge nodes.
基金Project supported by the National Key Research and Development Program of China(Grant No.2021YFB3200100)the National Natural Science Foundation of China(Grant No.61575131)。
文摘Terahertz time-domain spectroscopy(THz-TDS)system,as a new means of spectral analysis and detection,plays an increasingly pivotal role in basic scientific research.However,owing to the long scanning time of the traditional THz-TDS system and the complex control of the asynchronous optical scanning(ASOPS)system,which requires frequent calibration,we combine traditional THz-TDS and ASOPS systems to form a composite system and propose an all-fiber trigger signal generation method based on the time overlapping interference signal generated by the collinear motion of two laser pulses.Finally,the time-domain and frequency-domain spectra are obtained by using two independent systems in the integrated systems.It is found that the full width at half maximum(FWHM)of the time-domain spectra and the spectral width of the frequency-domain spectra are almost the same,but the sampling speed of the ASOPS system is significantly faster than that of the traditional THz-TDS system,which conduces to the study of the transient characteristics of substances.
基金This work was supported by Technology Project of State Grid Jiangsu Electric Power Co.,Ltd.,China(J2022114,Risk Assessment and Coordinated Operation of Coastal Wind Power Multi-Point Pooling Access System under Extreme Weather).
文摘The lack of reactive power in offshore wind farms will affect the voltage stability and power transmission quality of wind farms.To improve the voltage stability and reactive power economy of wind farms,the improved particle swarmoptimization is used to optimize the reactive power planning in wind farms.First,the power flow of offshore wind farms is modeled,analyzed and calculated.To improve the global search ability and local optimization ability of particle swarm optimization,the improved particle swarm optimization adopts the adaptive inertia weight and asynchronous learning factor.Taking the minimum active power loss of the offshore wind farms as the objective function,the installation location of the reactive power compensation device is compared according to the node voltage amplitude and the actual engineering needs.Finally,a reactive power optimizationmodel based on Static Var Compensator is established inMATLAB to consider the optimal compensation capacity,network loss,convergence speed and voltage amplitude enhancement effect of SVC.Comparing the compensation methods in several different locations,the compensation scheme with the best reactive power optimization effect is determined.Meanwhile,the optimization results of the standard particle swarm optimization and the improved particle swarm optimization are compared to verify the superiority of the proposed improved algorithm.