Amplitude variations with offset or incident angle (AVO/AVA) inversion are typically combined with statistical methods, such as Bayesian inference or deterministic inversion. We propose a joint elastic inversion met...Amplitude variations with offset or incident angle (AVO/AVA) inversion are typically combined with statistical methods, such as Bayesian inference or deterministic inversion. We propose a joint elastic inversion method in the time and frequency domain based on Bayesian inversion theory to improve the resolution of the estimated P- and S-wave velocities and density. We initially construct the objective function using Bayesian inference by combining seismic data in the time and frequency domain. We use Cauchy and Gaussian probability distribution density functions to obtain the prior information for the model parameters and the likelihood function, respectively. We estimate the elastic parameters by solving the initial objective function with added model constraints to improve the inversion robustness. The results of the synthetic data suggest that the frequency spectra of the estimated parameters are wider than those obtained with conventional elastic inversion in the time domain. In addition, the proposed inversion approach offers stronger antinoising compared to the inversion approach in the frequency domain. Furthermore, results from synthetic examples with added Gaussian noise demonstrate the robustness of the proposed approach. From the real data, we infer that more model parameter details can be reproduced with the proposed joint elastic inversion.展开更多
Due to the strong electromagnetic interferences and human interference,traditional electromagnetic methods cannot obtain high quality resistivity data of mineral deposits in Chinese mines.The wide field electromagneti...Due to the strong electromagnetic interferences and human interference,traditional electromagnetic methods cannot obtain high quality resistivity data of mineral deposits in Chinese mines.The wide field electromagnetic method(WFEM),in which the pseudo-random signal is taken as the transmitter source,can extract high quality resistivity data in areas with sever interference by only measuring the electric field component.We use the WFEM to extract the resistivity information of the Dongguashan mine in southeast China.Compared with the audio magnetotelluric(AMT)method,and the controlled source audio-frequency magnetotelluric(CSAMT) method,the WFEM can obtain data with higher quality and simpler operations.The inversion results indicate that the WFEM can accurately identify the location of the main ore-body,which can be used for deep mine exploration in areas with strong interference.展开更多
Radio Frequency Interferences (RFI), such as strong Continuous Wave Interferences (CWI), can influence the Quality of Service (QoS) of communications, increasing the Bit Error Rate (BER) and decreasing the Signal-to-N...Radio Frequency Interferences (RFI), such as strong Continuous Wave Interferences (CWI), can influence the Quality of Service (QoS) of communications, increasing the Bit Error Rate (BER) and decreasing the Signal-to-Noise Ratio (SNR) in any wireless transmission, including in a Digital Video Broadcasting (DVB-S2) receiver. Therefore, this paper presents an algorithm for detecting and mitigating a Multi-tone Continuous Wave Interference (MCWI) using a Multiple Adaptive Notch Filter (MANF), based on the lattice form structure. The Adaptive Notch Filter (ANF) is constructed using the second-order IIR NF. The approach consists in developing a robust low-complexity algorithm for removing unknown MCWI. The MANF model is a multistage model, with each stage consisting of two ANFs: the adaptive IIR notch filter <i>H</i><i><sub>l</sub></i>(<i>z</i>) and the adaptive IIR notch filter <i>H</i><i><sub>N</sub></i>(<i>z</i>), which can detect and mitigate CWI. In this model, the ANF is used for estimating the Jamming-to-Signal Ratio (JSR) and the frequency of the interference (<i>w(0)</i>) by using an LMS-based algorithm. The depth of the notch is then adjusted based on the estimation of the JSR. In contrast, the ANF <i>H</i><i><sub>N</sub></i>(<i>z</i>) is used to mitigate the CW interference. Simulation results show that the proposed ANF is an effective method for eliminating/reducing the effects of MCWI, and yields better system performance than full suppression (<i>k<sub>N</sub></i>=1) for low JSR values, and mostly the same performance for high JSR values. Moreover, the proposed can detect low and high JSR and track hopping frequency interference and provides better Bit error ratio (BER) performance compared to the case without an IIR notch filter.展开更多
An algorithm for carrier frequency offset estimation with narrowband interference in burstmode transmissions is proposed.The algorithm is data-aided and has a feedforward structure that can be easily implemented digit...An algorithm for carrier frequency offset estimation with narrowband interference in burstmode transmissions is proposed.The algorithm is data-aided and has a feedforward structure that can be easily implemented digitally.The principle of the algorithm is based on a properly designed training sequence and an interpolation technique.Simulation results indicate that the estimation range is about ±20% of the symbol rate.The performance is satisfactory for a signal-to-noise ratio(SNR)as low as -13 dB and the mean square error(MSE)is approximately irrelevant to signal-to-interference ratio(SIR)values over -20 dB.展开更多
This paper analyses frequency tracking characteristics of a complex-coefficient adaptive infinite-impulse response (IIR) notch filter used for suppression of narrow-band interference (NBI) with a randomly-varying freq...This paper analyses frequency tracking characteristics of a complex-coefficient adaptive infinite-impulse response (IIR) notch filter used for suppression of narrow-band interference (NBI) with a randomly-varying frequency in a quadriphase shift keying (QPSK) modulated direct-sequence code-division multiple-access (DS-CDMA) communication system. The QPSK DS-CDMA signals are transmitted over a frequency non-selective Rayleigh fading channel. The analysis is based on a first-order real-coefficient difference equation with respect to steady-state instantaneous frequency tracking error from which a closed-form expression that relates frequency tracking mean square error (MSE) with number of DS-CDMA active users and NBI power is obtained. Closed-form expressions for optimum notch bandwidth coefficient and step size constant that minimize the frequency tracking MSE are also derived. Computer simulations are included to substantiate the accuracy of the analyses.展开更多
This paper proposes a novel sampled-data asynchronous fuzzy output feedback control approach for active suspension systems in restricted frequency domain.In order to better investigate uncertain suspension dynamics,th...This paper proposes a novel sampled-data asynchronous fuzzy output feedback control approach for active suspension systems in restricted frequency domain.In order to better investigate uncertain suspension dynamics,the sampleddata Takagi-Sugeno(T-S)fuzzy half-car active suspension(HCAS)system is considered,which is further modelled as a continuous system with an input delay.Firstly,considering that the fuzzy system and the fuzzy controller cannot share the identical premises due to the existence of input delay,a reconstructed method is employed to synchronize the time scales of membership functions between the fuzzy controller and the fuzzy system.Secondly,since external disturbances often belong to a restricted frequency range,a finite frequency control criterion is presented for control synthesis to reduce conservatism.Thirdly,given a full information of state variables is hardly available in practical suspension systems,a two-stage method is proposed to calculate the static output feedback control gains.Moreover,an iterative algorithm is proposed to compute the optimum solution.Finally,numerical simulations verify the effectiveness of the proposed controllers.展开更多
Multi-beam satellite communication systems can improve the resource utilization and system capacity effectively.However,the inter-beam interference,especially for the satellite system with full frequency reuse,will de...Multi-beam satellite communication systems can improve the resource utilization and system capacity effectively.However,the inter-beam interference,especially for the satellite system with full frequency reuse,will degrade the system performance greatly due to the characteristics of multi-beam satellite antennas.In this article,the user scheduling and resource allocation of a multi-beam satellite system with full frequency reuse are jointly studied,in which all beams can use the full bandwidth.With the strong inter-beam interference,we aim to minimize the system latency experienced by the users during the process of data downloading.To solve this problem,deep reinforcement learning is used to schedule users and allocate bandwidth and power resources to mitigate the inter-beam interference.The simulation results are compared with other reference algorithms to verify the effectiveness of the proposed algorithm.展开更多
Orthogonal Frequency Division Multiplexing (OFDM) systems suffer from performance deterioration when the length of Cyclic Prefix (CP) is shorter than the Channel Impulse Response (CIR). The fundamental reason of this ...Orthogonal Frequency Division Multiplexing (OFDM) systems suffer from performance deterioration when the length of Cyclic Prefix (CP) is shorter than the Channel Impulse Response (CIR). The fundamental reason of this impairment is the InterCarrier Interference (ICI) and Inter- Symbol Interference (ISI) introduced by the excessive multipath delay. Specifically, Multiple Input Multiple Output (MIMO) beamforming is helpful in cancelling such interference since it can spatially suppress some of the multipath. In this paper, we propose an ICI eliminating beamforming scheme employing a per-tone processing approach, thus with moderate computational complexity. The ISI is removed by using a simple decision feedback equalizer, while the optimal steering and combining vectors are then derived to maximize the Signal to Interference plus Noise Ratio (SINR). This method not only achieves the beamforming benefit, but also significantly alleviates the ICI. Simulation results show that the proposed algorithm can effectively reduce the system Symbol Error Rate (SER), per- mitting good performance for multipath delay profiles that would break conventional links.展开更多
We describe the fabrication of high performance YBa2Cu3O7-δ (YBCO) radio frequency (RF) superconducting quantum interference devices (SQUIDs), which were prepared on 5 mm×5 mm LaAlO3 (LAO) substrates by ...We describe the fabrication of high performance YBa2Cu3O7-δ (YBCO) radio frequency (RF) superconducting quantum interference devices (SQUIDs), which were prepared on 5 mm×5 mm LaAlO3 (LAO) substrates by employing stepedge junctions (SEJs) and in flip-chip configuration with 12 mm×12 mm resonators. The step in the substrate was produced by Ar ion etching with step angles ranging from 47° to 61°, which is steep enough to ensure the formation of grain boundaries (GBs) at the step edges. The YBCO film was deposited using the pulsed laser deposition (PLD) technique with a film thickness half of the height of the substrate step. The inductance of the SQUID washer was designed to be about 157 pH. Under these circumstances, high performance YBCO RF SQUIDs were successfully fabricated with a typical flux-voltage transfer ratio of 83 mV/φ0, a white flux noise of 29 μφ0/√Hz, and the magnetic field sensitivity as high as 80 fT/√Hz. These devices have been applied in magnetocardiography and geological surveys.展开更多
This paper presented a scheme of two-hop cellular network with fixed relay nodes (FRN). Based on this scheme, co-channel interference and signal interference ratio(SIR) received by base station(BS) and FRN were analyz...This paper presented a scheme of two-hop cellular network with fixed relay nodes (FRN). Based on this scheme, co-channel interference and signal interference ratio(SIR) received by base station(BS) and FRN were analyzed. Both the theoretical analysis and simulation results show that the SIR can be improved significantly when relays are employed in the network. The higher spectral efficiency can be obtained due to the improved two-hop link quality through the use of adaptive modulation and coding (AMC). The antenna height of FRN and the cell radius of BS and that of FRN influence SIR received by BS and FRN and the system spectral efficiency greatly. The proper antenna height of FRN and cell radius of BS and that of FRN were also given to get the highest spectral efficiency.展开更多
An asynchronous transmission scenario for non-orthogonal multiple access(NOMA)user signals with arbitrary phase offset is investigated in this paper.To improve the system performance in the user power-balanced conditi...An asynchronous transmission scenario for non-orthogonal multiple access(NOMA)user signals with arbitrary phase offset is investigated in this paper.To improve the system performance in the user power-balanced conditions,we adopt a synthetic detection method at the receiver,i.e.,the jointly optimal maximal likelihood detection aided triangular successive interference cancellation(JO ML-TSIC)method.Analytical bit error rate(BER)solutions are obtained for a two-user case with the optimal,intentional onehalf symbol period time delay implemented between the user signals.Furthermore,closed-form BER solutions for the case using the triangular successive interference cancellation(TSIC)detection method are also derived for comparisons.Numerical results show that the JO ML-TSIC receiver for the asynchronous system outperforms the TSIC receiver as well as the synchronous successive interference cancellation(SIC)receiver in all the conditions concerned.The results also show that the superiority of the JO ML-TSIC receiver is strengthened when the signals experience flat Rayleigh fading channels compared to the TSIC and the synchronous SIC receivers.展开更多
Fractional frequency reuse(FFR) has recently emerged as an efficient inter-cell interference coordination technique for orthogonal frequency division multiple access(OFDMA) based multi-tier cellular networks due to it...Fractional frequency reuse(FFR) has recently emerged as an efficient inter-cell interference coordination technique for orthogonal frequency division multiple access(OFDMA) based multi-tier cellular networks due to its low complexity, minimal signaling over-head, and coverage improvement. In this work, an intermediary region(IR) at the border of the center region(CR) and edge region(ER) is defined, which prevents severe cross-tier interference and is usually ignored by other schemes. Furthermore, a strategic resource allocation scheme is proposed, which allows macro users in this new region to be served more resources due to their good channel conditions close to the serving base station(BS), while femto users are assigned resource blocks from sub-bands that receive the least net interference from a set of usable sub-bands in any region. We find by analysis and simulation the optimal threshold for IR, which minimizes the cross-tier interference, and show that the femto throughput is also maximized for this threshold. Numerical results show the proposed scheme outperforms other notable schemes in terms of throughput and outage performances.展开更多
In this paper, we investigate the issues of initialization and deployment of wireless sensor networks(WSNs) under IEEE 802.11 b/g interference and fading channels using frequency hopping(FH). We propose an FH algo...In this paper, we investigate the issues of initialization and deployment of wireless sensor networks(WSNs) under IEEE 802.11 b/g interference and fading channels using frequency hopping(FH). We propose an FH algorithm for WSNs, which is implemented and tested with a pair of nodes employing IPv6 over low power wireless personal area networks(6 LoWPAN) standard.The merits and demerits of the proposed FH scheme in WSNs are studied under strong IEEE 802.11 b/g interference and frequency selective fading channels. We compare the performance results of the proposed FH scheme with those obtained by single-channel radio in WSNs, and show that FH maintains very reliable data rates in the presence of adverse conditions where the single-channel radio fails. We determine a minimum center frequency offset of channels between IEEE 802.15.4 and IEEE 802.11 b/g-based networks, which guarantees the error free network operation of IEEE802.15.4 using a single channel. We design a second FH procedure comprising only four free channels(15, 20, 25, and 26) of IEEE 802.15.4 standard, and show that in the presence of nearby IEEE 802.11 b/g interference, the IEEE 802.15.4 data rate using this method is always 98% and more.展开更多
In this paper, Moose scheme is used for frequency offset estimation in OFDMA uplink svstems due to that the signals from different users can be easily distinguished in frequency domain. However, differential multiple ...In this paper, Moose scheme is used for frequency offset estimation in OFDMA uplink svstems due to that the signals from different users can be easily distinguished in frequency domain. However, differential multiple access interference (MAI) will deteriorate the frequency offset estimation performances, especially in interleaved OFDMA system. Analysis and simulation results manifest that frequency offset estimation by Moose scheme in block OFDMA system is more robust than that in interleaved OFDMA systern. And an iterative interference cancellation method has been proposed to suppress the differential MAI interference for interleaved OFDMA system, in which Moose scheme is the special case of the number of iteration is equal to one. Simulation results demonstrate that the proposed method can improve the performance with the increase of the number of iterations. In consideration of the performance and complexity, the proposed method with two iterations is selected. And the full comparison results of the proposed iterative method with two iterations and that with one iteration (conventional Moose scheme) are given in the paper, which sufficiently demonstrate that the performance gain can be obtained by the interference cancellation operation in interleaved OFDMA system.展开更多
Directional wave spectra and integrated wave parameters can be derived from X-band radar sea surface images.A vessel on the sea surface has a significant influence on wave parameter inversions that can be seen as inte...Directional wave spectra and integrated wave parameters can be derived from X-band radar sea surface images.A vessel on the sea surface has a significant influence on wave parameter inversions that can be seen as intensive backscatter speckles in X-band wave monitoring radar sea surface images.A novel algorithm to eliminate the interference of vessels in ocean wave height inversions from X-band wave monitoring radar is proposed.This algorithm is based on the characteristics of the interference.The principal components(PCs) of a sea surface image sequence are extracted using empirical orthogonal function(EOF)analysis.The standard deviation of the PCs is then used to identify vessel interference within the image sequence.To mitigate the interference,a suppression method based on a frequency domain geometric model is applied.The algorithm framework has been applied to OSMAR-X,a wave monitoring system developed by Wuhan University,based on nautical X-band radar.Several sea surface images captured on vessels by OSMAR-X are processed using the method proposed in this paper.Inversion schemes are validated by comparisons with data from in situ wave buoys.The root-mean-square error between the significant wave heights(SWH) retrieved from original interference radar images and those measured by the buoy is reduced by 0.25 m.The determinations of surface gravity wave parameters,in particular SWH,confirm the applicability of the proposed method.展开更多
This paper addresses the problem of interference mitigation in cooperative Space Time Block Coded Orthogonal Frequency Division Multiplexing (STBC-OFDM) systems in the presence of asyn-chronism. This scheme first prep...This paper addresses the problem of interference mitigation in cooperative Space Time Block Coded Orthogonal Frequency Division Multiplexing (STBC-OFDM) systems in the presence of asyn-chronism. This scheme first preprocesses the received ST codewords to convert the equivalent fading matrix into a suboptimal ordering upper triangular form based on low complexity permutation QR decomposition, and then suppresses the InterCarrier Interference (ICI) and InterSymbol Interference (ISI) by exploiting Successive Interference Cancellation (SIC) technique. Simulation results show that the performance of the proposed algorithm slightly outmatches or asymptotically approaches to that of the existing Minimum Mean Square Error (MMSE) detector depending on the magnitude of the Carrier Frequency Offsets (CFOs) but with less complexity.展开更多
Achieving reliable underwater communication in shallow water acoustic channels is a difficult task because of the random time varying nature of multipath propagation, severe amplitude fluctuation, and spatial variabil...Achieving reliable underwater communication in shallow water acoustic channels is a difficult task because of the random time varying nature of multipath propagation, severe amplitude fluctuation, and spatial variability of the channel conditions. This paper describes a new signal processing technique frequency coding and decoding by means of real time measurement of signal width, jamming and suppressing multipath interference and using redundant coder. The application of the technique to the model ZTY 1 status monitor for underwater system of seabed is introduced in this paper. The main principle, the technique specifications and the key techniques of the system are discussed here. Theoretical estimations and experimental results proved that the performance of the system is excellent. The method can be used for some other related low data rate data transmission detecting in shallow water acoustic channel.展开更多
A power saving frequency difference controlling method was introduced by the double inverter and motor experiment system.The characters of the system under differ- ent loads were investigated.The theoretical analysis ...A power saving frequency difference controlling method was introduced by the double inverter and motor experiment system.The characters of the system under differ- ent loads were investigated.The theoretical analysis and experiment results show the frequency difference method is a ideal power saving speed regulation method for the dou- ble inverter and motor system.The experiment system is simply structured,convenient to operate and provides a new way of character testing for frequency conversion speed regulation.展开更多
Radio frequency interference(RFI)will pollute the weak astronomical signals received by radio telescopes,which in return will seriously affect the time-domain astronomical observation and research.In this paper,we use...Radio frequency interference(RFI)will pollute the weak astronomical signals received by radio telescopes,which in return will seriously affect the time-domain astronomical observation and research.In this paper,we use a deep learning method to identify RFI in frequency spectrum data,and propose a neural network based on Unet that combines the principles of depthwise separable convolution and residual,named DSC Based Dual-Resunet.Compared with the existing Unet network,DSC Based Dual-Resunet performs better in terms of accuracy,F1 score,and MIoU,and is also better in terms of computation cost where the model size and parameter amount are 12.5%of Unet and the amount of computation is 38%of Unet.The experimental results show that the proposed network is a high-performance and lightweight network,and it is hopeful to be applied to RFI identification of radio telescopes on a large scale.展开更多
基金supported by the National Nature Science Foundation Project(Nos.41604101 and U1562215)the National Grand Project for Science and Technology(No.2016ZX05024-004)+2 种基金the Natural Science Foundation of Shandong(No.BS2014NJ005)Science Foundation from SINOPEC Key Laboratory of Geophysics(No.33550006-15-FW2099-0027)the Fundamental Research Funds for the Central Universities
文摘Amplitude variations with offset or incident angle (AVO/AVA) inversion are typically combined with statistical methods, such as Bayesian inference or deterministic inversion. We propose a joint elastic inversion method in the time and frequency domain based on Bayesian inversion theory to improve the resolution of the estimated P- and S-wave velocities and density. We initially construct the objective function using Bayesian inference by combining seismic data in the time and frequency domain. We use Cauchy and Gaussian probability distribution density functions to obtain the prior information for the model parameters and the likelihood function, respectively. We estimate the elastic parameters by solving the initial objective function with added model constraints to improve the inversion robustness. The results of the synthetic data suggest that the frequency spectra of the estimated parameters are wider than those obtained with conventional elastic inversion in the time domain. In addition, the proposed inversion approach offers stronger antinoising compared to the inversion approach in the frequency domain. Furthermore, results from synthetic examples with added Gaussian noise demonstrate the robustness of the proposed approach. From the real data, we infer that more model parameter details can be reproduced with the proposed joint elastic inversion.
基金Project(2018YFC0807802)supported by the National Key R&D Program of ChinaProject(41874081)supported by the National Natural Science Foundation of China
文摘Due to the strong electromagnetic interferences and human interference,traditional electromagnetic methods cannot obtain high quality resistivity data of mineral deposits in Chinese mines.The wide field electromagnetic method(WFEM),in which the pseudo-random signal is taken as the transmitter source,can extract high quality resistivity data in areas with sever interference by only measuring the electric field component.We use the WFEM to extract the resistivity information of the Dongguashan mine in southeast China.Compared with the audio magnetotelluric(AMT)method,and the controlled source audio-frequency magnetotelluric(CSAMT) method,the WFEM can obtain data with higher quality and simpler operations.The inversion results indicate that the WFEM can accurately identify the location of the main ore-body,which can be used for deep mine exploration in areas with strong interference.
文摘Radio Frequency Interferences (RFI), such as strong Continuous Wave Interferences (CWI), can influence the Quality of Service (QoS) of communications, increasing the Bit Error Rate (BER) and decreasing the Signal-to-Noise Ratio (SNR) in any wireless transmission, including in a Digital Video Broadcasting (DVB-S2) receiver. Therefore, this paper presents an algorithm for detecting and mitigating a Multi-tone Continuous Wave Interference (MCWI) using a Multiple Adaptive Notch Filter (MANF), based on the lattice form structure. The Adaptive Notch Filter (ANF) is constructed using the second-order IIR NF. The approach consists in developing a robust low-complexity algorithm for removing unknown MCWI. The MANF model is a multistage model, with each stage consisting of two ANFs: the adaptive IIR notch filter <i>H</i><i><sub>l</sub></i>(<i>z</i>) and the adaptive IIR notch filter <i>H</i><i><sub>N</sub></i>(<i>z</i>), which can detect and mitigate CWI. In this model, the ANF is used for estimating the Jamming-to-Signal Ratio (JSR) and the frequency of the interference (<i>w(0)</i>) by using an LMS-based algorithm. The depth of the notch is then adjusted based on the estimation of the JSR. In contrast, the ANF <i>H</i><i><sub>N</sub></i>(<i>z</i>) is used to mitigate the CW interference. Simulation results show that the proposed ANF is an effective method for eliminating/reducing the effects of MCWI, and yields better system performance than full suppression (<i>k<sub>N</sub></i>=1) for low JSR values, and mostly the same performance for high JSR values. Moreover, the proposed can detect low and high JSR and track hopping frequency interference and provides better Bit error ratio (BER) performance compared to the case without an IIR notch filter.
基金Supported by the National Natural Science Foundation of China(61301089)
文摘An algorithm for carrier frequency offset estimation with narrowband interference in burstmode transmissions is proposed.The algorithm is data-aided and has a feedforward structure that can be easily implemented digitally.The principle of the algorithm is based on a properly designed training sequence and an interpolation technique.Simulation results indicate that the estimation range is about ±20% of the symbol rate.The performance is satisfactory for a signal-to-noise ratio(SNR)as low as -13 dB and the mean square error(MSE)is approximately irrelevant to signal-to-interference ratio(SIR)values over -20 dB.
文摘This paper analyses frequency tracking characteristics of a complex-coefficient adaptive infinite-impulse response (IIR) notch filter used for suppression of narrow-band interference (NBI) with a randomly-varying frequency in a quadriphase shift keying (QPSK) modulated direct-sequence code-division multiple-access (DS-CDMA) communication system. The QPSK DS-CDMA signals are transmitted over a frequency non-selective Rayleigh fading channel. The analysis is based on a first-order real-coefficient difference equation with respect to steady-state instantaneous frequency tracking error from which a closed-form expression that relates frequency tracking mean square error (MSE) with number of DS-CDMA active users and NBI power is obtained. Closed-form expressions for optimum notch bandwidth coefficient and step size constant that minimize the frequency tracking MSE are also derived. Computer simulations are included to substantiate the accuracy of the analyses.
基金supported by the National Natural Science Foundation of China(51705084)the Natural Science Foundation of Guangdong Province of China(2018A030313999,2019A1515011602)+2 种基金the Fundamental Research Funds for the Central Universities(2018MS46,N2003032)the Opening Project of Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing,South China University of Technology(2019kfkt06)the Research Grants of the University of Macao(MYRG2017-00135-FST,MYRG2019-00028-FST)。
文摘This paper proposes a novel sampled-data asynchronous fuzzy output feedback control approach for active suspension systems in restricted frequency domain.In order to better investigate uncertain suspension dynamics,the sampleddata Takagi-Sugeno(T-S)fuzzy half-car active suspension(HCAS)system is considered,which is further modelled as a continuous system with an input delay.Firstly,considering that the fuzzy system and the fuzzy controller cannot share the identical premises due to the existence of input delay,a reconstructed method is employed to synchronize the time scales of membership functions between the fuzzy controller and the fuzzy system.Secondly,since external disturbances often belong to a restricted frequency range,a finite frequency control criterion is presented for control synthesis to reduce conservatism.Thirdly,given a full information of state variables is hardly available in practical suspension systems,a two-stage method is proposed to calculate the static output feedback control gains.Moreover,an iterative algorithm is proposed to compute the optimum solution.Finally,numerical simulations verify the effectiveness of the proposed controllers.
基金supported by National Natural Science Foundation of China(61533013,61273144)Scientific Technology Research and Development Plan Project of Tangshan(13130298B)Scientific Technology Research and Development Plan Project of Hebei(z2014070)
基金supported in part by the National Natural Science Foundation of China under Grant 62171052,Grant 61971054Science and Technology on Information Transmission and Dissemination in Communication Networks Laboratory Foundation under Grant HHX21641X002。
文摘Multi-beam satellite communication systems can improve the resource utilization and system capacity effectively.However,the inter-beam interference,especially for the satellite system with full frequency reuse,will degrade the system performance greatly due to the characteristics of multi-beam satellite antennas.In this article,the user scheduling and resource allocation of a multi-beam satellite system with full frequency reuse are jointly studied,in which all beams can use the full bandwidth.With the strong inter-beam interference,we aim to minimize the system latency experienced by the users during the process of data downloading.To solve this problem,deep reinforcement learning is used to schedule users and allocate bandwidth and power resources to mitigate the inter-beam interference.The simulation results are compared with other reference algorithms to verify the effectiveness of the proposed algorithm.
基金Supported by the National Science Fund for Distinguished Young Scholars (No. 60725105)the National Basic Re-search Program of China (2009CB320404)+5 种基金the Program for Changjiang Scholars and Innovative Research Team in Universitythe National High Technology Research and Development Program of China (2007AA01Z288)the 111 Project (B08038)the National Natural Science Founda-tion of China (No. 60902032, 60902033, and 60702057)the Key Project of Chinese Ministry of Education (107103) the Program for State Key Laboratory of Integrated Service Networks (ISN02080001)
文摘Orthogonal Frequency Division Multiplexing (OFDM) systems suffer from performance deterioration when the length of Cyclic Prefix (CP) is shorter than the Channel Impulse Response (CIR). The fundamental reason of this impairment is the InterCarrier Interference (ICI) and Inter- Symbol Interference (ISI) introduced by the excessive multipath delay. Specifically, Multiple Input Multiple Output (MIMO) beamforming is helpful in cancelling such interference since it can spatially suppress some of the multipath. In this paper, we propose an ICI eliminating beamforming scheme employing a per-tone processing approach, thus with moderate computational complexity. The ISI is removed by using a simple decision feedback equalizer, while the optimal steering and combining vectors are then derived to maximize the Signal to Interference plus Noise Ratio (SINR). This method not only achieves the beamforming benefit, but also significantly alleviates the ICI. Simulation results show that the proposed algorithm can effectively reduce the system Symbol Error Rate (SER), per- mitting good performance for multipath delay profiles that would break conventional links.
基金supported by the National Basic Research Program of China(Grant No.2011CBA00106)the National Natural Science Foundation of China(Grant No.11074008)the Research Fund for the Doctoral Program of Higher Education,China(Grant No.20100001120006)
文摘We describe the fabrication of high performance YBa2Cu3O7-δ (YBCO) radio frequency (RF) superconducting quantum interference devices (SQUIDs), which were prepared on 5 mm×5 mm LaAlO3 (LAO) substrates by employing stepedge junctions (SEJs) and in flip-chip configuration with 12 mm×12 mm resonators. The step in the substrate was produced by Ar ion etching with step angles ranging from 47° to 61°, which is steep enough to ensure the formation of grain boundaries (GBs) at the step edges. The YBCO film was deposited using the pulsed laser deposition (PLD) technique with a film thickness half of the height of the substrate step. The inductance of the SQUID washer was designed to be about 157 pH. Under these circumstances, high performance YBCO RF SQUIDs were successfully fabricated with a typical flux-voltage transfer ratio of 83 mV/φ0, a white flux noise of 29 μφ0/√Hz, and the magnetic field sensitivity as high as 80 fT/√Hz. These devices have been applied in magnetocardiography and geological surveys.
基金National Science Fund for Creative ResearchGroups (No. 60521002) Chinese NationalKey Technology R&D Program(No. 2005-BA908B02)Science Foundation of ShanghaiMunicipal Commission of Science and Tech-nology(No.05dz05802)
文摘This paper presented a scheme of two-hop cellular network with fixed relay nodes (FRN). Based on this scheme, co-channel interference and signal interference ratio(SIR) received by base station(BS) and FRN were analyzed. Both the theoretical analysis and simulation results show that the SIR can be improved significantly when relays are employed in the network. The higher spectral efficiency can be obtained due to the improved two-hop link quality through the use of adaptive modulation and coding (AMC). The antenna height of FRN and the cell radius of BS and that of FRN influence SIR received by BS and FRN and the system spectral efficiency greatly. The proper antenna height of FRN and cell radius of BS and that of FRN were also given to get the highest spectral efficiency.
基金supported by the National Natural Science Foundation of China (Grant No. 62022019)
文摘An asynchronous transmission scenario for non-orthogonal multiple access(NOMA)user signals with arbitrary phase offset is investigated in this paper.To improve the system performance in the user power-balanced conditions,we adopt a synthetic detection method at the receiver,i.e.,the jointly optimal maximal likelihood detection aided triangular successive interference cancellation(JO ML-TSIC)method.Analytical bit error rate(BER)solutions are obtained for a two-user case with the optimal,intentional onehalf symbol period time delay implemented between the user signals.Furthermore,closed-form BER solutions for the case using the triangular successive interference cancellation(TSIC)detection method are also derived for comparisons.Numerical results show that the JO ML-TSIC receiver for the asynchronous system outperforms the TSIC receiver as well as the synchronous successive interference cancellation(SIC)receiver in all the conditions concerned.The results also show that the superiority of the JO ML-TSIC receiver is strengthened when the signals experience flat Rayleigh fading channels compared to the TSIC and the synchronous SIC receivers.
基金supported by the National Major Project under Grant No.2015ZX03001013-002
文摘Fractional frequency reuse(FFR) has recently emerged as an efficient inter-cell interference coordination technique for orthogonal frequency division multiple access(OFDMA) based multi-tier cellular networks due to its low complexity, minimal signaling over-head, and coverage improvement. In this work, an intermediary region(IR) at the border of the center region(CR) and edge region(ER) is defined, which prevents severe cross-tier interference and is usually ignored by other schemes. Furthermore, a strategic resource allocation scheme is proposed, which allows macro users in this new region to be served more resources due to their good channel conditions close to the serving base station(BS), while femto users are assigned resource blocks from sub-bands that receive the least net interference from a set of usable sub-bands in any region. We find by analysis and simulation the optimal threshold for IR, which minimizes the cross-tier interference, and show that the femto throughput is also maximized for this threshold. Numerical results show the proposed scheme outperforms other notable schemes in terms of throughput and outage performances.
基金supported by the Important National Science and Technology Specific Project of China(2018ZX03001020-0052016ZX03001022-006)+2 种基金the National Natural Science Foundation of China(61771308)the Shanghai Science and Technology Committee(16DZ1100402)the Special Project of Military and Civilian Integration of Shanghai Economic and Information Committee with the name"Ultra High Sensitivity UAV Communication System Based on Radar Related Technology"
文摘In this paper, we investigate the issues of initialization and deployment of wireless sensor networks(WSNs) under IEEE 802.11 b/g interference and fading channels using frequency hopping(FH). We propose an FH algorithm for WSNs, which is implemented and tested with a pair of nodes employing IPv6 over low power wireless personal area networks(6 LoWPAN) standard.The merits and demerits of the proposed FH scheme in WSNs are studied under strong IEEE 802.11 b/g interference and frequency selective fading channels. We compare the performance results of the proposed FH scheme with those obtained by single-channel radio in WSNs, and show that FH maintains very reliable data rates in the presence of adverse conditions where the single-channel radio fails. We determine a minimum center frequency offset of channels between IEEE 802.15.4 and IEEE 802.11 b/g-based networks, which guarantees the error free network operation of IEEE802.15.4 using a single channel. We design a second FH procedure comprising only four free channels(15, 20, 25, and 26) of IEEE 802.15.4 standard, and show that in the presence of nearby IEEE 802.11 b/g interference, the IEEE 802.15.4 data rate using this method is always 98% and more.
文摘In this paper, Moose scheme is used for frequency offset estimation in OFDMA uplink svstems due to that the signals from different users can be easily distinguished in frequency domain. However, differential multiple access interference (MAI) will deteriorate the frequency offset estimation performances, especially in interleaved OFDMA system. Analysis and simulation results manifest that frequency offset estimation by Moose scheme in block OFDMA system is more robust than that in interleaved OFDMA systern. And an iterative interference cancellation method has been proposed to suppress the differential MAI interference for interleaved OFDMA system, in which Moose scheme is the special case of the number of iteration is equal to one. Simulation results demonstrate that the proposed method can improve the performance with the increase of the number of iterations. In consideration of the performance and complexity, the proposed method with two iterations is selected. And the full comparison results of the proposed iterative method with two iterations and that with one iteration (conventional Moose scheme) are given in the paper, which sufficiently demonstrate that the performance gain can be obtained by the interference cancellation operation in interleaved OFDMA system.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(Nos.2012AA091701,2012AA091702)the National Natural Science Foundation of China(No.61401316)+1 种基金the PhD.Programs Foundation of Ministry of Education of China(No.20130141110053)the Fundamental Research Fund for the Central Universities of China(No.2014212020203)
文摘Directional wave spectra and integrated wave parameters can be derived from X-band radar sea surface images.A vessel on the sea surface has a significant influence on wave parameter inversions that can be seen as intensive backscatter speckles in X-band wave monitoring radar sea surface images.A novel algorithm to eliminate the interference of vessels in ocean wave height inversions from X-band wave monitoring radar is proposed.This algorithm is based on the characteristics of the interference.The principal components(PCs) of a sea surface image sequence are extracted using empirical orthogonal function(EOF)analysis.The standard deviation of the PCs is then used to identify vessel interference within the image sequence.To mitigate the interference,a suppression method based on a frequency domain geometric model is applied.The algorithm framework has been applied to OSMAR-X,a wave monitoring system developed by Wuhan University,based on nautical X-band radar.Several sea surface images captured on vessels by OSMAR-X are processed using the method proposed in this paper.Inversion schemes are validated by comparisons with data from in situ wave buoys.The root-mean-square error between the significant wave heights(SWH) retrieved from original interference radar images and those measured by the buoy is reduced by 0.25 m.The determinations of surface gravity wave parameters,in particular SWH,confirm the applicability of the proposed method.
基金Supported by the National Outstanding Youth Science Fund (No. 60725105)the Program for Changjiang Scholars and Innovative Research Team in University(IRT0852)+1 种基金the National Natural Science Foundation of China (No. 60702057)the Fundamental Research Funds for the Central Universities (JY10000901030)
文摘This paper addresses the problem of interference mitigation in cooperative Space Time Block Coded Orthogonal Frequency Division Multiplexing (STBC-OFDM) systems in the presence of asyn-chronism. This scheme first preprocesses the received ST codewords to convert the equivalent fading matrix into a suboptimal ordering upper triangular form based on low complexity permutation QR decomposition, and then suppresses the InterCarrier Interference (ICI) and InterSymbol Interference (ISI) by exploiting Successive Interference Cancellation (SIC) technique. Simulation results show that the performance of the proposed algorithm slightly outmatches or asymptotically approaches to that of the existing Minimum Mean Square Error (MMSE) detector depending on the magnitude of the Carrier Frequency Offsets (CFOs) but with less complexity.
文摘Achieving reliable underwater communication in shallow water acoustic channels is a difficult task because of the random time varying nature of multipath propagation, severe amplitude fluctuation, and spatial variability of the channel conditions. This paper describes a new signal processing technique frequency coding and decoding by means of real time measurement of signal width, jamming and suppressing multipath interference and using redundant coder. The application of the technique to the model ZTY 1 status monitor for underwater system of seabed is introduced in this paper. The main principle, the technique specifications and the key techniques of the system are discussed here. Theoretical estimations and experimental results proved that the performance of the system is excellent. The method can be used for some other related low data rate data transmission detecting in shallow water acoustic channel.
文摘A power saving frequency difference controlling method was introduced by the double inverter and motor experiment system.The characters of the system under differ- ent loads were investigated.The theoretical analysis and experiment results show the frequency difference method is a ideal power saving speed regulation method for the dou- ble inverter and motor system.The experiment system is simply structured,convenient to operate and provides a new way of character testing for frequency conversion speed regulation.
基金supported by the National Natural Science Foundation of China(Grant No.11790305)partially supported by the Specialized Research Fund for State Key Laboratories(Grant No.SYS-202002-04)。
文摘Radio frequency interference(RFI)will pollute the weak astronomical signals received by radio telescopes,which in return will seriously affect the time-domain astronomical observation and research.In this paper,we use a deep learning method to identify RFI in frequency spectrum data,and propose a neural network based on Unet that combines the principles of depthwise separable convolution and residual,named DSC Based Dual-Resunet.Compared with the existing Unet network,DSC Based Dual-Resunet performs better in terms of accuracy,F1 score,and MIoU,and is also better in terms of computation cost where the model size and parameter amount are 12.5%of Unet and the amount of computation is 38%of Unet.The experimental results show that the proposed network is a high-performance and lightweight network,and it is hopeful to be applied to RFI identification of radio telescopes on a large scale.