In this paper, the high-level knowledge of financial data modeled by ordinary differential equations (ODEs) is discovered in dynamic data by using an asynchronous parallel evolutionary modeling algorithm (APHEMA). A n...In this paper, the high-level knowledge of financial data modeled by ordinary differential equations (ODEs) is discovered in dynamic data by using an asynchronous parallel evolutionary modeling algorithm (APHEMA). A numerical example of Nasdaq index analysis is used to demonstrate the potential of APHEMA. The results show that the dynamic models automatically discovered in dynamic data by computer can be used to predict the financial trends.展开更多
Nonlinear multisplitting method is known as parallel iterative methods for solving a large-scale system of nonlinear equations F(x) = 0. We extend the idea of nonlinear multisplitting and consider a new model ill whic...Nonlinear multisplitting method is known as parallel iterative methods for solving a large-scale system of nonlinear equations F(x) = 0. We extend the idea of nonlinear multisplitting and consider a new model ill which the iteration is executed asynchronously: Each processor calculate the solution of an individual nonlinear system belong to its nonlinear multisplitting and can update the global approximation residing in the shared memory at any time. A local convergence analysis of this model is presented. Finally, we give a uumerical example which shows a 'strange' property that speedup Sp > p and efficiency Ep > 1.展开更多
Recently Guo Tao proposed a stochastic search algorithm in his PhD thesis for solving function optimization problems. He combined the subspace search method (a general multi-parent recombination strategy) with the pop...Recently Guo Tao proposed a stochastic search algorithm in his PhD thesis for solving function optimization problems. He combined the subspace search method (a general multi-parent recombination strategy) with the population hill-climbing method. The former keeps a global search for overall situation, and the latter keeps the convergence of the algorithm. Guo's algorithm has many advantages, such as the simplicity of its structure, the higher accuracy of its results, the wide range of its applications, and the robustness of its use. In this paper a preliminary theoretical analysis of the algorithm is given and some numerical experiments has been done by using Guo's algorithm for demonstrating the theoretical results. Three asynchronous parallel evolutionary algorithms with different granularities for MIMD machines are designed by parallelizing Guo's Algorithm.展开更多
In this paper an asynchronous parllel algorithm based on domain decomposition method (DDM) -Schwarz-Projection method for solving some nonlinear partial differential equations 9is discussed.The comvergence of the algo...In this paper an asynchronous parllel algorithm based on domain decomposition method (DDM) -Schwarz-Projection method for solving some nonlinear partial differential equations 9is discussed.The comvergence of the algorithm and numerical example are give.展开更多
A class of asynchronous nested matrix multisplitting methods for solving large-scale systems of linear equations are proposed, and their convergence characterizations are studied in detail when the coefficient matrice...A class of asynchronous nested matrix multisplitting methods for solving large-scale systems of linear equations are proposed, and their convergence characterizations are studied in detail when the coefficient matrices of the linear systems are monotone matrices and H-matrices, respectively.展开更多
文摘In this paper, the high-level knowledge of financial data modeled by ordinary differential equations (ODEs) is discovered in dynamic data by using an asynchronous parallel evolutionary modeling algorithm (APHEMA). A numerical example of Nasdaq index analysis is used to demonstrate the potential of APHEMA. The results show that the dynamic models automatically discovered in dynamic data by computer can be used to predict the financial trends.
文摘Nonlinear multisplitting method is known as parallel iterative methods for solving a large-scale system of nonlinear equations F(x) = 0. We extend the idea of nonlinear multisplitting and consider a new model ill which the iteration is executed asynchronously: Each processor calculate the solution of an individual nonlinear system belong to its nonlinear multisplitting and can update the global approximation residing in the shared memory at any time. A local convergence analysis of this model is presented. Finally, we give a uumerical example which shows a 'strange' property that speedup Sp > p and efficiency Ep > 1.
基金Supported by the Natonal Natural Science Foundation of China (No. 70071042 60073043)the National 863 Hi-Tech Project of Chi
文摘Recently Guo Tao proposed a stochastic search algorithm in his PhD thesis for solving function optimization problems. He combined the subspace search method (a general multi-parent recombination strategy) with the population hill-climbing method. The former keeps a global search for overall situation, and the latter keeps the convergence of the algorithm. Guo's algorithm has many advantages, such as the simplicity of its structure, the higher accuracy of its results, the wide range of its applications, and the robustness of its use. In this paper a preliminary theoretical analysis of the algorithm is given and some numerical experiments has been done by using Guo's algorithm for demonstrating the theoretical results. Three asynchronous parallel evolutionary algorithms with different granularities for MIMD machines are designed by parallelizing Guo's Algorithm.
文摘In this paper an asynchronous parllel algorithm based on domain decomposition method (DDM) -Schwarz-Projection method for solving some nonlinear partial differential equations 9is discussed.The comvergence of the algorithm and numerical example are give.
文摘A class of asynchronous nested matrix multisplitting methods for solving large-scale systems of linear equations are proposed, and their convergence characterizations are studied in detail when the coefficient matrices of the linear systems are monotone matrices and H-matrices, respectively.