More than four decades ago it was established that an elevated low-density lipoprotein-cholesterol level was a risk for developing coronary artery disease. For the last two decades, statins have been the cornerstone o...More than four decades ago it was established that an elevated low-density lipoprotein-cholesterol level was a risk for developing coronary artery disease. For the last two decades, statins have been the cornerstone of reducing low-density lipoprotein-cholesterol, but despite significant clinical efficacy in the majority of patients, a large number of patients suffer from side effects and cannot tolerate the required statin dose to reach their recommended low-density lipoprotein-cholesterol goals. Preliminary clinical studies indicate that monoclonal antibodies to PCSK9 appear to be highly efficacious in lowering low-density lipoprotein-cholesterol with a favourable adverse event profile. However, further longer-term clinical studies are required to determine their safety. From the early-proposed concept for high-density lipoprotein-mediated cholesterol efflux for the treatment of coronary artery disease, the concentration of the cholesterol content in high-density lipoprotein particles has been considered a surrogate measurement for the efficacy of the reverse cholesterol transport process. However, unlike the beneficial effects of the statins and monoclonal antibodies to PCSK9 in reducing low-density lipoprotein-cholesterol, no significant advances have been made to increase the levels of high-density lipoprotein-cholesterol. Here it is shown that by a non-pharmacological plasma delipidation means, the atherogenic low-density lipoproteins can be converted to anti-atherogenic particles and that the high-density lipoproteins are converted to particles with extreme high affinity to cause rapid regression of atherosclerosis.展开更多
The differences of serum lipid and lipoprotein (LP,profiles of animals susceptible (rabbit)and nonsusceptible (Beijing duck) to atherosclerosis as well as the distribution of apolipo-protein (apo) A-I and its cataboli...The differences of serum lipid and lipoprotein (LP,profiles of animals susceptible (rabbit)and nonsusceptible (Beijing duck) to atherosclerosis as well as the distribution of apolipo-protein (apo) A-I and its catabolism in vivo were studied.Eight items,i.e.total cholesterol(TC),high density lipoprotein (HDL) cholesterol,triglyceride,percentage of a-LP and β-LP,β-LP concentration,lecithin cholesterol acyl transferase (LCAT),and agarose and polyacryla-mide gel electrophoresis of both species were assayed before and after feeding a high fat,high cholesterol diet.Results indicate that the exogenous cholesterol consumed by Beijingducks was carried and transported by HDL,while that in rabbits was transported by lowdensity lipoprotein (LDL).The biological half lives of apo A-I in serum and in HDL were41.11±2.4 and 42.8±1.7 h respectively.and its distribution in different organs was in theorder of liver】kidney】spleen】lung】heart】intestine】muscles】aorta.These resultsshow that the liver is the major organ for metabolizing HDL apo A-I.and the kidneyis also important.The results also imply that in Beijing ducks the cholesterol carried byHDL may be catabolized through apo A-I receptors in the liver and kidney.The differencesin cholesterol binding and in lipoprotein and apolipoprotein metabolism of the two speciesprovide important clues for the elucidation of the pathogenesis of atherosclerosis.展开更多
Atherosclerosis is the precedent to ischemic heart disease, which may lead to angina, myocardial infarct, or heart failure;or to ischemic cerebrovascular disease, which may lead to stroke. The prevailing belief underl...Atherosclerosis is the precedent to ischemic heart disease, which may lead to angina, myocardial infarct, or heart failure;or to ischemic cerebrovascular disease, which may lead to stroke. The prevailing belief underlying conventional approaches to treatment of atherosclerosis and its sequel is that a diet high in cholesterol and saturated fat is the main contributory factor, triggering cholesterol build up in the intima of the blood vessels. Over the last 60 years, the blame has shifted from fats, to saturated fats, to low-density lipoprotein (LDL), and finally to oxidized LDL (Ox-LDL). Therapy has been predominantly aimed at lowering cholesterol and control of risk factors. However, there is an alternative hypothesis about the cause of heart disease linking it to the weakening of the vascular collagen matrix at the sites of high hemodynamic stress (coronary arteries) which triggers the infiltration of lipoprotein(apo) [Lp(a)] and plaque development. Accordingly, the vascular deposition of large molecules such as Lp(a) and atherosclerosis is the result of the body’s endogenous protective mechanism to reinforce the weakened artery walls. Understanding this mechanism may guide the natural prevention of this disease and form the basis for developing effective therapeutic strategies aiming at natural reversal of atherosclerosis through the reinforcement of the vascular wall structure as its primary goal. This reappraisal of atherosclerosis and the cholesterol theory looked at the historical development of the theory, and the Rath and Pauling unified theory of cardiovascular disease.展开更多
Atherosclerosis(AS)is a major cause of cardiovascular diseases(CVDs)and a strong link with hepatic steatosis.Silver carp muscle hydrolysate(SCH)possess various beneficial activities but its effect on AS and hepatic st...Atherosclerosis(AS)is a major cause of cardiovascular diseases(CVDs)and a strong link with hepatic steatosis.Silver carp muscle hydrolysate(SCH)possess various beneficial activities but its effect on AS and hepatic steatosis is yet unknown.This study aimed to investigate the effects of SCH on AS lesions and hepatic steatosis using apoE-/-mice.Results showed that SCH significantly reduced the vascular AS plaques and alleviated hepatic steatosis lesions in apoE-/-mice.Consistent with this,the lipid levels both in circulation and liver were lowered by SCH.The mechanism analysis showed SCH down-regulated the expression of genes involved in lipoproteins production while up-regulated the expression of genes related to reverse cholesterol transport(RCT)in liver.Meanwhile,SCH remarkably promoted transintestinal cholesterol excretion(TICE)process in intestine,partly contributing to the reduction of blood lipids.The peptide profile data indicated LYF,HWPW,FPK,and YPR are the main peptides in SCH that play a vital role in alleviating AS lesions and hepatic steatosis.Our findings provided new knowledge for the application of SCH in ameliorating CVDs and liver diseases.展开更多
Surgical intervention is currently the primary treatment for hepatolithiasis;how-ever,some patients still experience residual stones and high recurrence rates after surgery.Cholesterol metabolism seems to play an impo...Surgical intervention is currently the primary treatment for hepatolithiasis;how-ever,some patients still experience residual stones and high recurrence rates after surgery.Cholesterol metabolism seems to play an important role in hepatoli-thiasis pathogenesis.A high cholesterol diet is one of the significant reasons for the increasing incidence of hepatolithiasis.Therefore,regular diet and appropriate medical intervention are crucial measures to prevent hepatolithiasis and reduce recurrence rate after surgery.Reducing dietary cholesterol and drugs that increase cholesterol stone solubility are key therapeutic approaches in treating hepato-lithiasis.This article discusses the cholesterol metabolic pathways related to the pathogenesis of hepatolithiasis,as well as food intake and targeted therapeutic drugs.展开更多
Alzheimer's disease,the primary cause of dementia,is characterized by neuropathologies,such as amyloid plaques,synaptic and neuronal degeneration,and neurofibrillary tangles.Although amyloid plaques are the primar...Alzheimer's disease,the primary cause of dementia,is characterized by neuropathologies,such as amyloid plaques,synaptic and neuronal degeneration,and neurofibrillary tangles.Although amyloid plaques are the primary characteristic of Alzheimer's disease in the central nervous system and peripheral organs,targeting amyloid-beta clearance in the central nervous system has shown limited clinical efficacy in Alzheimer's disease treatment.Metabolic abnormalities are commonly observed in patients with Alzheimer's disease.The liver is the primary peripheral organ involved in amyloid-beta metabolism,playing a crucial role in the pathophysiology of Alzheimer's disease.Notably,impaired cholesterol metabolism in the liver may exacerbate the development of Alzheimer's disease.In this review,we explore the underlying causes of Alzheimer's disease and elucidate the role of the liver in amyloid-beta clearance and cholesterol metabolism.Furthermore,we propose that restoring normal cholesterol metabolism in the liver could represent a promising therapeutic strategy for addressing Alzheimer's disease.展开更多
Objective:To observe the effects of Danggui Shaoyao powder(DSP)on hepatic lipid metabolism and further explore its mechanism of action by peroxisome proliferator-activated receptor(PPARγ)-liver X receptor(LXRα)-aden...Objective:To observe the effects of Danggui Shaoyao powder(DSP)on hepatic lipid metabolism and further explore its mechanism of action by peroxisome proliferator-activated receptor(PPARγ)-liver X receptor(LXRα)-adenosine triphosphate(ATP)-binding cassette transporter A1(ABCA1)pathway regulation.Methods: Eight C57BL/6J male mice were selected as the control group,and 24 ApoE^(−/−)male mice were randomly divided into the atherosclerosis model(AS)group,atorvastatin calcium(AC)group,and DSP group(n=8 each group).To establish an AS model,ApoE^(−/−)mice were fed a high-fat diet for 16 weeks.Pathologic changes in the aortic vasculature and liver were identified using Oil Red O staining.Triglyceride(TG),cholesterol(TC),and low-density lipoprotein cholesterol(LDL-C)levels were determined in the livers using a single-reagent GPO-PAP method.Fluorescence quantitative polymerase chain reaction and western blot were used to observe and evaluate the mRNA and protein expression of the PPARγ-LXRα-ABCA1 intermediates in the liver.Results: After 16 weeks of a high-fat diet,ApoE^(−/−)mice showed more Oil Red O staining in the aorta and liver compared to the CONT group.Compared to the AS group,the DSP and AC treatment reduced aortic plaque and hepatic lipid deposition to varying degrees.Furthermore,DSP significantly reduced the hepatic lipid area in ApoE^(−/−)mice(P<.001)and decreased the levels of TG,TC,and LDL-C in liver(P<.001,P=.027,P<.001,respectively).DSP also significantly increased the levels of PPARγ,LXRα,ABCA1,and ABCG1 mRNA expression,as well as the PPARγ,LXRα,ABCA1,and ABCG1 protein expression in liver.Conclusion: DSP improved hepatic lipid metabolism via PPARγ-LXRα-ABCA1 pathway modulation for AS treatment.展开更多
Atherosclerosis(AS)is the main pathological basis of cardiovascular diseases.Hence,the prevention and treatment strategies of AS have attracted great research attention.As a potential probiotic,Pararabacteroides dista...Atherosclerosis(AS)is the main pathological basis of cardiovascular diseases.Hence,the prevention and treatment strategies of AS have attracted great research attention.As a potential probiotic,Pararabacteroides distasonis has a positive regulatory effect on lipid metabolism and bile acids(BAs)profile.Oligomeric procyanidins have been confirmed to be conducive to the prevention and treatment of AS,whose antiatherosclerotic effect may be associated with the promotion of gut probiotics.However,it remains unclear whether and how oligomeric procyanidins and P.distasonis combined(PPC)treatment can effectively alleviate high-fat diet(HFD)-induced AS.In this study,PPC treatment was found to significantly decrease atherosclerotic lesion,as well as alleviate the lipid metabolism disorder,inflammation and oxidative stress injury in ApoE^(-/-)mice.Surprisingly,targeted metabolomics demonstrated that PPC intervention altered the BA profile in mice by regulating the ratio of secondary BAs to primary BAs,and increased fecal BAs excretion.Further,quantitative polymerase chain reaction(qPCR)analysis showed that PPC intervention facilitated reverse cholesterol transport by upregulating Srb1 expression;In addition,PPC intervention promoted BA synthesis from cholesterol in liver by upregulating Cyp7a1 expression via suppression of the farnesoid X receptor(FXR)pathway,thus exhibiting a significant serum cholesterol-lowering effect.In summary,PPC attenuated HFD-induced AS in ApoE^(-/-)mice,which provides new insights into the design of novel and efficient anti-atherosclerotic strategies to prevent AS based on probiotics and prebiotics.展开更多
The aim of this study was to explore the impact of chronic apical periodontitis(CAP)on atherosclerosis in apoE^(−/−)mice fed high-fat diet(HFD).This investigation focused on the gut microbiota,metabolites,and intestin...The aim of this study was to explore the impact of chronic apical periodontitis(CAP)on atherosclerosis in apoE^(−/−)mice fed high-fat diet(HFD).This investigation focused on the gut microbiota,metabolites,and intestinal barrier function to uncover potential links between oral health and cardiovascular disease(CVD).In this study,CAP was shown to exacerbate atherosclerosis in HFD-fed apoE^(−/−)mice,as evidenced by the increase in plaque size and volume in the aortic walls observed via Oil Red O staining.16S rRNA sequencing revealed significant alterations in the gut microbiota,with harmful bacterial species thriving while beneficial species declining.Metabolomic profiling indicated disruptions in lipid metabolism and primary bile acid synthesis,leading to elevated levels of taurochenodeoxycholic acid(TCDCA),taurocholic acid(TCA),and tauroursodeoxycholic acid(TDCA).These metabolic shifts may contribute to atherosclerosis development.Furthermore,impaired intestinal barrier function,characterized by reduced mucin expression and disrupted tight junction proteins,was observed.The increased intestinal permeability observed was positively correlated with the severity of atherosclerotic lesions,highlighting the importance of the intestinal barrier in cardiovascular health.In conclusion,this research underscores the intricate interplay among oral health,gut microbiota composition,metabolite profiles,and CVD incidence.These findings emphasize the importance of maintaining good oral hygiene as a potential preventive measure against cardiovascular issues,as well as the need for further investigations into the intricate mechanisms linking oral health,gut microbiota,and metabolic pathways in CVD development.展开更多
Statins are lipid-lowering agents widely used in the treatment of hypercholesterolemia and atherosclerosis. They act by inhibiting of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, an enzyme responsible fo...Statins are lipid-lowering agents widely used in the treatment of hypercholesterolemia and atherosclerosis. They act by inhibiting of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, an enzyme responsible for the conversion of HMG-CoA to mevalonate in cholesterol biosynthesis. Due to their ability to reduce low-density lipoproteins (LDL) levels more than other cholesterol-lowering drugs, they have become the drugs most often prescribed in the treatment of atherosclerosis.展开更多
Background:To explore potential biomarkers for early diagnosis of atherosclerosis(AS)and provide basic data for further research on AS,the characteristics of serum metabolomics during the progression of AS in mini-pig...Background:To explore potential biomarkers for early diagnosis of atherosclerosis(AS)and provide basic data for further research on AS,the characteristics of serum metabolomics during the progression of AS in mini-pigs were observed dynamically.Methods:An AS model in Bama miniature pigs was established by a high-cholesterol and high-fat diet.Fasting serum samples were collected monthly for metabolomics and serum lipid detection.At the end of the treatment period,pathological analysis of the abdominal aorta and coronary artery was performed to evaluate the lesions of AS,thereby distinguishing the susceptibility of mini-pigs to AS.The metabolomics was de-tected using a high-resolution untargeted metabolomic approach.Statistical analysis was used to identify metabolites associated with AS susceptibility.Results:Based on pathological analysis,mini-pigs were divided into two groups:a susceptible group(n=3)and a non-susceptible group(n=6).A total of 1318 metabo-lites were identified,with significant shifting of metabolic profiles over time in both groups.Dynamic monitoring analysis highlighted 57 metabolites that exhibited an ob-vious trend of differential changes between two groups with the advance of time.The KEGG(Kyoto Encyclopedia of Genes and Genomes)pathway enrichment analysis in-dicated significant disorders in cholesterol metabolism,primary bile acid metabolism,histidine metabolism,as well as taurine and hypotaurine metabolism.Conclusions:During the progression of AS in mini-pigs induced by high-cholesterol/high-fat diet,the alterations in serum metabolic profile exhibited a time-dependent pattern,accompanied by notable disturbances in lipid metabolism,cholesterol me-tabolism,and amino acid metabolism.These metabolites may become potential bio-markers for early diagnosis of AS.展开更多
BACKGROUND Previous studies have demonstrated the benefits of ideal cardiovascular health(CVH) in reducing cardiovascular risk.However,its role in subclinical atherosclerosis(SA) progression remains unclear.We aim to ...BACKGROUND Previous studies have demonstrated the benefits of ideal cardiovascular health(CVH) in reducing cardiovascular risk.However,its role in subclinical atherosclerosis(SA) progression remains unclear.We aim to examine the association of CVH,estimated by the American Heart Association's new Life's Essential 8(LE8),with the progression of SA.METHODS This prospective cohort study was conducted among 972 asymptomatic Chinese participants and followed up for5.7 years.The LE8 score(range,0–100) consisted of blood pressure,lipids,glucose,body mass index,smoking status,diet health,physical activity and sleep health was evaluated in 1998 and 2008–2009.Progression of SA was determined by carotid plaque and coronary artery calcification(CAC) in 2008–2009 and 2013–2014.Log-binomial regression model was used to estimate the association of LE8 score with SA progression.RESULTS Each 10 points increment in LE8 score was associated with 15.2%(RR:0.848,95% CI:0.797–0.902),17.7%(RR:0.823,95% CI:0.766–0.884) and 12.0%(RR:0.880,95% CI:0.845–0.916) lower risks of carotid plaque,CAC and overall SA progression,respectively.Compared with participants with non-ideal CVH at both visits,the participants with ideal CVH at both visits had39.1%(RR:0.609,95% CI:0.494–0.752),41.0%(RR:0.590,95% CI:0.456–0.764) and 29.7%(RR:0.703,95% CI:0.598–0.825) lower risks of carotid plaque,CAC and overall SA progression,respectively.CONCLUSIONS Higher LE8 scores were associated with lower risks of SA progression.Besides,long-term maintenance of optimal CVH was more beneficial to prevent SA progression.展开更多
Atherosclerosis,as the most prevalent form of cardiovascular disease,is characterized by oxidized lowdensity lipoprotein(ox-LDL)accumulation in the vascular wall,increased inflammation of the large arteries,dysfunctio...Atherosclerosis,as the most prevalent form of cardiovascular disease,is characterized by oxidized lowdensity lipoprotein(ox-LDL)accumulation in the vascular wall,increased inflammation of the large arteries,dysfunction of the endothelial cells(ECs)and vascular smooth muscle cells(VSMCs),which may eventually lead to the formation of plaques.Xanthophylls,one of the main groups of carotenoids,have been proposed as preventive agents or adjunct therapies to prevent and slow the progression of atherosclerosis due to their cardioprotective properties.However,the underlying preventive mechanism of action of xanthophylls on the pathogenesis of atherosclerosis remains unclear,and clinical evidence of the effect of xanthophylls on atherosclerosis have not yet been summarized and critically reviewed.In this regard,we conducted a comprehensive literature search in four scientific databases(Pub Med,Google Scholar,Science Direct and Web of Science)and carefully analyzed the existing evidence to provide meaningful insights on the association between xanthophylls and atherosclerosis from various aspects.Based on the evidence from in vitro and in vivo studies,we explored several potential mechanisms,including antioxidant effect,anti-inflammatory effect,regulation of lipid metabolism,and modulation of ECs and VSMCs dysfunction,and we found that a clear picture of regulatory pathways of xanthophylls on atherosclerosis prevention and treatment is still lacking.In addition,epidemiological studies suggested the possible relationship among high dietary intake of xanthophylls,high plasma/serum xanthophylls and a reduced risk of atherosclerosis.Direct evidence from interventional studies investigating the effect of xanthophylls on atherosclerosis is very sparse,whilst indirect clinical evidence was only limited to astaxanthin and lutein.Therefore,well-designed long-term randomized controlled trials(RCTs)are highly recommended for future studies to investigate the effective dose of different xanthophylls on atherosclerosis prevention and their possible ancillary effect in conjunction with drug therapies on different stages of atherosclerosis.展开更多
Foam cells play a pivotal role in the progression of atherosclerosis progression by triggering inflammation within arterial walls.They release inflammatory molecules that attract additional immune cells,leading to fur...Foam cells play a pivotal role in the progression of atherosclerosis progression by triggering inflammation within arterial walls.They release inflammatory molecules that attract additional immune cells,leading to further macrophage recruitment and plaque development.In this study,we develop an osteopontin(OPN)antibody-conjugated niobium carbide(Nb_(2)C-aOPN)MXenzyme designed to selectively target and mildly ablate foam cells while reducing inflammation in the plaque microenvironment.This approach utilizes photonic hyperthermia to decrease plaque size by enhancing cholesterol regulation through both passive cholesterol outflow and positive cholesterol efflux.Nb_(2)C-aOPN MXenzyme exhibits multiple enzyme-mimicking properties,including catalase,superoxide dismutase,peroxidase and glutathione peroxidase,and acts as a scavenger for reactive oxygen and nitrogen species.The inhibition of reactive oxygen and nitrogen species synergizes with photothermal ablation to promote positive cholesterol efflux,leading to reduced macrophage recruitment and a shift in macrophage phenotype from M1 to M2.This integrative strategy on cholesterol regulation and anti-inflammation highlights the potential of multifunctional 2D MXenzyme-based nanomedicine in advancing atherosclerotic regression.展开更多
Atherosclerosis(AS)is characterized by impairment and apoptosis of endothelial cells,continuous systemic and focal inflammation and dysfunction of vascular smooth muscle cells,which is documented as the traditional ce...Atherosclerosis(AS)is characterized by impairment and apoptosis of endothelial cells,continuous systemic and focal inflammation and dysfunction of vascular smooth muscle cells,which is documented as the traditional cellular paradigm.However,the mechanisms appear much more complicated than we thought since a bulk of studies on efferocytosis,transdifferentiation and novel cell death forms such as ferroptosis,pyroptosis,and extracellular trap were reported.Discovery of novel pathological cellular landscapes provides a large number of therapeutic targets.On the other side,the unsatisfactory therapeutic effects of current treatment with lipid-lowering drugs as the cornerstone also restricts the efforts to reduce global AS burden.Stem cell-or nanoparticle-based strategies spurred a lot of attention due to the attractive therapeutic effects and minimized adverse effects.Given the complexity of pathological changes of AS,attempts to develop an almighty medicine based on single mechanisms could be theoretically challenging.In this review,the top stories in the cellular landscapes during the initiation and progression of AS and the therapies were summarized in an integrated perspective to facilitate efforts to develop a multi-targets strategy and fill the gap between mechanism research and clinical translation.The future challenges and improvements were also discussed.展开更多
Atherosclerosis(AS)is a chronic inflammatory disease of large and medium-sized arteries that leads to ischemic heart disease,stroke,and peripheral vascular disease.Despite the current treatments,mortality and disabili...Atherosclerosis(AS)is a chronic inflammatory disease of large and medium-sized arteries that leads to ischemic heart disease,stroke,and peripheral vascular disease.Despite the current treatments,mortality and disability still remain high.Sonodynamic therapy(SDT),a non-invasive and localized methodology,has been developed as a promising new treatment for inhibiting atherosclerotic progression and stabilizing plaques.Promising progress has been made through cell and animal assays,as well as clinical trials.For example,the effect of SDT on apoptosis and autophagy of cells in AS,especially macrophages,and the concept of non-lethal SDT has also been proposed.In this review,we summarize the ultrasonic parameters and known sonosensitizers utilized in SDT for AS;we elaborate on SDT's therapeutic effects and mechanisms in terms of macrophages,T lymphocytes,neovascularization,smooth muscle cells,lipid,extracellular matrix and efferocytosis within plaques;additionally,we discuss the safety of SDT.A comprehensive summary of the confirmed effects of SDT on AS is conducted to establish a framework for future researchers.展开更多
Atherosclerosis is extremely widespread.Traditionally,it is considered a disease of older people,who most often experience problems with the heart and blood vessels.While much attention from the scientific community h...Atherosclerosis is extremely widespread.Traditionally,it is considered a disease of older people,who most often experience problems with the heart and blood vessels.While much attention from the scientific community has been paid to studying the association between aging and atherosclerosis,as well as its consequences,there is evidence that atherosclerosis occurs at an early age.Atherosclerosis may form both during intrauterine development and in childhood.Nutrition plays an important role in childhood atherosclerosis,along with previous infectious diseases and excess weight of both the child and the mother.In the present review,we examined the development of atherosclerosis and the prerequisites in childhood.展开更多
Atherosclerosis remains a great threat to human health worldwide.Previous studies found that tetramethylpyrazine(TMP)and paeonifl orin(PF)combination(TMP-PF)exerts anti-atherosclerotic effects in vitro.However,whether...Atherosclerosis remains a great threat to human health worldwide.Previous studies found that tetramethylpyrazine(TMP)and paeonifl orin(PF)combination(TMP-PF)exerts anti-atherosclerotic effects in vitro.However,whether TMP-PF improves atherosclerosis in vivo needs further exploration.The present study aims to assess the anti-atherosclerotic properties of TMP-PF in ApoE^(-/-)mice and explore the related molecule mechanisms.Results showed that TMP and high-dose TMP-PF decreased serum triglyceride and low-density lipoprotein cholesterol levels,suppressed vascular endothelial growth factor receptor 2(VEGFR2)and nuclear receptor subfamily 4 group A member 1(NR4A1)expression in aortic tissues,inhibited plaque angiogenesis,reduced plaque areas,and alleviated atherosclerosis in ApoE^(-/-)mice.Also,TMP-PF exhibited a better modulation effect than TMP or PF alone.However,NR4A1 agonist abolished the anti-atherosclerotic effects of TMP-PF.In conclusion,TMP-PF was first found to alleviate atherosclerosis progression by reducing hyperlipemia and inhibiting plaque angiogenesis via the NR4A1/VEGFR2 pathway,indicating that TMP-PF had a positive effect on reducing hyperlipemia and attenuating atherosclerosis development.展开更多
Free cholesterol has been considered to be a critical risk factor of nonalcoholic fatty liver disease(NAFLD).It remains unknown whether dietary intake of condensed tannins(CTs)have distinguishable effects to alleviate...Free cholesterol has been considered to be a critical risk factor of nonalcoholic fatty liver disease(NAFLD).It remains unknown whether dietary intake of condensed tannins(CTs)have distinguishable effects to alleviate liver damage caused by a high cholesterol diet.Male C57BL/6 mice were fed a high cholesterol diet for 6 weeks,and given CTs treatment at a dosage of 200 mg/(kg·day)at the same time.The results indicated that compared with mice fed a normal diet,a high cholesterol diet group resulted in significant weight loss,dysregulation of lipid metabolism in blood and liver,and oxidative stress in the liver,but CTs treatment dramatically reversed these negative effects.Hematoxylin and eosin(H&E)staining and frozen section observation manifested that CTs treatment could effectively reduce the deposition of liver cholesterol and tissue necrosis caused by high cholesterol intake.CTs alleviated liver injury mainly by regulating the expression of related genes in cholesterol metabolism pathway and AMPK phosphorylation.Our results confirmed that CTs have remarkable cholesterol lowering and anti-liver injury effects in vivo.展开更多
Rosuvastatin (RVS) is an excellent drug with anti-inflammatory and lipid-lowering properties in the academic and medical fields. However, this drug faces a series of challenges when used to treat atherosclerosis cause...Rosuvastatin (RVS) is an excellent drug with anti-inflammatory and lipid-lowering properties in the academic and medical fields. However, this drug faces a series of challenges when used to treat atherosclerosis caused by hyperhomocysteinemia (HHcy), including high oral dosage, poor targeting, and long-term toxic side effects. In this study, we applied nanotechnology to construct a biomimetic nano-delivery system, macrophage membrane (Møm)-coated RVS-loaded Prussian blue (PB) nanoparticles (MPR NPs), for improving the bioavailability and targeting capacity of RVS, specifically to the plaque lesions associated with HHcy-induced atherosclerosis. In vitro assays demonstrated that MPR NPs effectively inhibited the Toll-like receptor 4 (TLR4)/hypoxia-inducible factor-1α (HIF-1α)/nucleotide-binding and oligomerization domain (NOD)-like receptor thermal protein domain associated protein 3 (NLRP3) signaling pathways, reducing pyroptosis and inflammatory response in macrophages. Additionally, MPR NPs reversed the abnormal distribution of adenosine triphosphate (ATP)-binding cassette transporter A1 (ABCA1)/ATP binding cassette transporter G1 (ABCA1)/ATP binding cassette transporter G1 (ABCG1) caused by HIF-1α, promoting cholesterol efflux and reducing lipid deposition. In vivo studies using apolipoprotein E knockout (ApoE^(−/−)) mice confirmed the strong efficacy of MPR NPs in treating atherosclerosis with favorable biosecurity, and the mechanism behind this efficacy is believed to involve the regulation of serum metabolism and the remodeling of gut microbes. These findings suggest that the synthesis of MPR NPs provides a promising nanosystem for the targeted therapy of HHcy-induced atherosclerosis.展开更多
文摘More than four decades ago it was established that an elevated low-density lipoprotein-cholesterol level was a risk for developing coronary artery disease. For the last two decades, statins have been the cornerstone of reducing low-density lipoprotein-cholesterol, but despite significant clinical efficacy in the majority of patients, a large number of patients suffer from side effects and cannot tolerate the required statin dose to reach their recommended low-density lipoprotein-cholesterol goals. Preliminary clinical studies indicate that monoclonal antibodies to PCSK9 appear to be highly efficacious in lowering low-density lipoprotein-cholesterol with a favourable adverse event profile. However, further longer-term clinical studies are required to determine their safety. From the early-proposed concept for high-density lipoprotein-mediated cholesterol efflux for the treatment of coronary artery disease, the concentration of the cholesterol content in high-density lipoprotein particles has been considered a surrogate measurement for the efficacy of the reverse cholesterol transport process. However, unlike the beneficial effects of the statins and monoclonal antibodies to PCSK9 in reducing low-density lipoprotein-cholesterol, no significant advances have been made to increase the levels of high-density lipoprotein-cholesterol. Here it is shown that by a non-pharmacological plasma delipidation means, the atherogenic low-density lipoproteins can be converted to anti-atherogenic particles and that the high-density lipoproteins are converted to particles with extreme high affinity to cause rapid regression of atherosclerosis.
基金This investigation was supported by grants from the National Committee of Science and Technology and from the Chinese Ministry of Public Healthand was reported in the International Symposium on Cardiovascular Medicine and Surgery.1987,Beijing.
文摘The differences of serum lipid and lipoprotein (LP,profiles of animals susceptible (rabbit)and nonsusceptible (Beijing duck) to atherosclerosis as well as the distribution of apolipo-protein (apo) A-I and its catabolism in vivo were studied.Eight items,i.e.total cholesterol(TC),high density lipoprotein (HDL) cholesterol,triglyceride,percentage of a-LP and β-LP,β-LP concentration,lecithin cholesterol acyl transferase (LCAT),and agarose and polyacryla-mide gel electrophoresis of both species were assayed before and after feeding a high fat,high cholesterol diet.Results indicate that the exogenous cholesterol consumed by Beijingducks was carried and transported by HDL,while that in rabbits was transported by lowdensity lipoprotein (LDL).The biological half lives of apo A-I in serum and in HDL were41.11±2.4 and 42.8±1.7 h respectively.and its distribution in different organs was in theorder of liver】kidney】spleen】lung】heart】intestine】muscles】aorta.These resultsshow that the liver is the major organ for metabolizing HDL apo A-I.and the kidneyis also important.The results also imply that in Beijing ducks the cholesterol carried byHDL may be catabolized through apo A-I receptors in the liver and kidney.The differencesin cholesterol binding and in lipoprotein and apolipoprotein metabolism of the two speciesprovide important clues for the elucidation of the pathogenesis of atherosclerosis.
文摘Atherosclerosis is the precedent to ischemic heart disease, which may lead to angina, myocardial infarct, or heart failure;or to ischemic cerebrovascular disease, which may lead to stroke. The prevailing belief underlying conventional approaches to treatment of atherosclerosis and its sequel is that a diet high in cholesterol and saturated fat is the main contributory factor, triggering cholesterol build up in the intima of the blood vessels. Over the last 60 years, the blame has shifted from fats, to saturated fats, to low-density lipoprotein (LDL), and finally to oxidized LDL (Ox-LDL). Therapy has been predominantly aimed at lowering cholesterol and control of risk factors. However, there is an alternative hypothesis about the cause of heart disease linking it to the weakening of the vascular collagen matrix at the sites of high hemodynamic stress (coronary arteries) which triggers the infiltration of lipoprotein(apo) [Lp(a)] and plaque development. Accordingly, the vascular deposition of large molecules such as Lp(a) and atherosclerosis is the result of the body’s endogenous protective mechanism to reinforce the weakened artery walls. Understanding this mechanism may guide the natural prevention of this disease and form the basis for developing effective therapeutic strategies aiming at natural reversal of atherosclerosis through the reinforcement of the vascular wall structure as its primary goal. This reappraisal of atherosclerosis and the cholesterol theory looked at the historical development of the theory, and the Rath and Pauling unified theory of cardiovascular disease.
基金supported by the China Agriculture Research System(CARS-45),Natural Science Foundation of Jiangsu Province(BK20240918)the“Green Yangzhou Golden Phoenix”funding of Yangzhou(137013478).
文摘Atherosclerosis(AS)is a major cause of cardiovascular diseases(CVDs)and a strong link with hepatic steatosis.Silver carp muscle hydrolysate(SCH)possess various beneficial activities but its effect on AS and hepatic steatosis is yet unknown.This study aimed to investigate the effects of SCH on AS lesions and hepatic steatosis using apoE-/-mice.Results showed that SCH significantly reduced the vascular AS plaques and alleviated hepatic steatosis lesions in apoE-/-mice.Consistent with this,the lipid levels both in circulation and liver were lowered by SCH.The mechanism analysis showed SCH down-regulated the expression of genes involved in lipoproteins production while up-regulated the expression of genes related to reverse cholesterol transport(RCT)in liver.Meanwhile,SCH remarkably promoted transintestinal cholesterol excretion(TICE)process in intestine,partly contributing to the reduction of blood lipids.The peptide profile data indicated LYF,HWPW,FPK,and YPR are the main peptides in SCH that play a vital role in alleviating AS lesions and hepatic steatosis.Our findings provided new knowledge for the application of SCH in ameliorating CVDs and liver diseases.
基金Supported by Hebei Natural Science Foundation,No.H2022206539Hebei Provincial Government Funded Clinical Talents Training Project,No.ZF2023143.
文摘Surgical intervention is currently the primary treatment for hepatolithiasis;how-ever,some patients still experience residual stones and high recurrence rates after surgery.Cholesterol metabolism seems to play an important role in hepatoli-thiasis pathogenesis.A high cholesterol diet is one of the significant reasons for the increasing incidence of hepatolithiasis.Therefore,regular diet and appropriate medical intervention are crucial measures to prevent hepatolithiasis and reduce recurrence rate after surgery.Reducing dietary cholesterol and drugs that increase cholesterol stone solubility are key therapeutic approaches in treating hepato-lithiasis.This article discusses the cholesterol metabolic pathways related to the pathogenesis of hepatolithiasis,as well as food intake and targeted therapeutic drugs.
基金financially supported by the Science and Technology Innovation Program of Hunan Province,No.2022RC1220(to WP)China Postdoctoral Science Foundation,No.2022M711733(to ZZ)+2 种基金the National Natural Science Foundation of China,No.82160920(to ZZ)Hebei Postdoctoral Scientific Research Project,No.B2022003040(to ZZ)Hunan Flagship Department of Integrated Traditional Chinese and Western Medicine(to WP)。
文摘Alzheimer's disease,the primary cause of dementia,is characterized by neuropathologies,such as amyloid plaques,synaptic and neuronal degeneration,and neurofibrillary tangles.Although amyloid plaques are the primary characteristic of Alzheimer's disease in the central nervous system and peripheral organs,targeting amyloid-beta clearance in the central nervous system has shown limited clinical efficacy in Alzheimer's disease treatment.Metabolic abnormalities are commonly observed in patients with Alzheimer's disease.The liver is the primary peripheral organ involved in amyloid-beta metabolism,playing a crucial role in the pathophysiology of Alzheimer's disease.Notably,impaired cholesterol metabolism in the liver may exacerbate the development of Alzheimer's disease.In this review,we explore the underlying causes of Alzheimer's disease and elucidate the role of the liver in amyloid-beta clearance and cholesterol metabolism.Furthermore,we propose that restoring normal cholesterol metabolism in the liver could represent a promising therapeutic strategy for addressing Alzheimer's disease.
基金supported by the National Natural Science Foundation of China(82074325).
文摘Objective:To observe the effects of Danggui Shaoyao powder(DSP)on hepatic lipid metabolism and further explore its mechanism of action by peroxisome proliferator-activated receptor(PPARγ)-liver X receptor(LXRα)-adenosine triphosphate(ATP)-binding cassette transporter A1(ABCA1)pathway regulation.Methods: Eight C57BL/6J male mice were selected as the control group,and 24 ApoE^(−/−)male mice were randomly divided into the atherosclerosis model(AS)group,atorvastatin calcium(AC)group,and DSP group(n=8 each group).To establish an AS model,ApoE^(−/−)mice were fed a high-fat diet for 16 weeks.Pathologic changes in the aortic vasculature and liver were identified using Oil Red O staining.Triglyceride(TG),cholesterol(TC),and low-density lipoprotein cholesterol(LDL-C)levels were determined in the livers using a single-reagent GPO-PAP method.Fluorescence quantitative polymerase chain reaction and western blot were used to observe and evaluate the mRNA and protein expression of the PPARγ-LXRα-ABCA1 intermediates in the liver.Results: After 16 weeks of a high-fat diet,ApoE^(−/−)mice showed more Oil Red O staining in the aorta and liver compared to the CONT group.Compared to the AS group,the DSP and AC treatment reduced aortic plaque and hepatic lipid deposition to varying degrees.Furthermore,DSP significantly reduced the hepatic lipid area in ApoE^(−/−)mice(P<.001)and decreased the levels of TG,TC,and LDL-C in liver(P<.001,P=.027,P<.001,respectively).DSP also significantly increased the levels of PPARγ,LXRα,ABCA1,and ABCG1 mRNA expression,as well as the PPARγ,LXRα,ABCA1,and ABCG1 protein expression in liver.Conclusion: DSP improved hepatic lipid metabolism via PPARγ-LXRα-ABCA1 pathway modulation for AS treatment.
基金supported by the National Natural Science Foundation of China(32272331)。
文摘Atherosclerosis(AS)is the main pathological basis of cardiovascular diseases.Hence,the prevention and treatment strategies of AS have attracted great research attention.As a potential probiotic,Pararabacteroides distasonis has a positive regulatory effect on lipid metabolism and bile acids(BAs)profile.Oligomeric procyanidins have been confirmed to be conducive to the prevention and treatment of AS,whose antiatherosclerotic effect may be associated with the promotion of gut probiotics.However,it remains unclear whether and how oligomeric procyanidins and P.distasonis combined(PPC)treatment can effectively alleviate high-fat diet(HFD)-induced AS.In this study,PPC treatment was found to significantly decrease atherosclerotic lesion,as well as alleviate the lipid metabolism disorder,inflammation and oxidative stress injury in ApoE^(-/-)mice.Surprisingly,targeted metabolomics demonstrated that PPC intervention altered the BA profile in mice by regulating the ratio of secondary BAs to primary BAs,and increased fecal BAs excretion.Further,quantitative polymerase chain reaction(qPCR)analysis showed that PPC intervention facilitated reverse cholesterol transport by upregulating Srb1 expression;In addition,PPC intervention promoted BA synthesis from cholesterol in liver by upregulating Cyp7a1 expression via suppression of the farnesoid X receptor(FXR)pathway,thus exhibiting a significant serum cholesterol-lowering effect.In summary,PPC attenuated HFD-induced AS in ApoE^(-/-)mice,which provides new insights into the design of novel and efficient anti-atherosclerotic strategies to prevent AS based on probiotics and prebiotics.
基金supported by the National Natural Science Foundation of China(No.81970926)supported by the Fujian Province Natural Science Foundation of China(No.2023J01709)the Fujian Provincial Health Technology Project(No.2022QNA073).
文摘The aim of this study was to explore the impact of chronic apical periodontitis(CAP)on atherosclerosis in apoE^(−/−)mice fed high-fat diet(HFD).This investigation focused on the gut microbiota,metabolites,and intestinal barrier function to uncover potential links between oral health and cardiovascular disease(CVD).In this study,CAP was shown to exacerbate atherosclerosis in HFD-fed apoE^(−/−)mice,as evidenced by the increase in plaque size and volume in the aortic walls observed via Oil Red O staining.16S rRNA sequencing revealed significant alterations in the gut microbiota,with harmful bacterial species thriving while beneficial species declining.Metabolomic profiling indicated disruptions in lipid metabolism and primary bile acid synthesis,leading to elevated levels of taurochenodeoxycholic acid(TCDCA),taurocholic acid(TCA),and tauroursodeoxycholic acid(TDCA).These metabolic shifts may contribute to atherosclerosis development.Furthermore,impaired intestinal barrier function,characterized by reduced mucin expression and disrupted tight junction proteins,was observed.The increased intestinal permeability observed was positively correlated with the severity of atherosclerotic lesions,highlighting the importance of the intestinal barrier in cardiovascular health.In conclusion,this research underscores the intricate interplay among oral health,gut microbiota composition,metabolite profiles,and CVD incidence.These findings emphasize the importance of maintaining good oral hygiene as a potential preventive measure against cardiovascular issues,as well as the need for further investigations into the intricate mechanisms linking oral health,gut microbiota,and metabolic pathways in CVD development.
文摘Statins are lipid-lowering agents widely used in the treatment of hypercholesterolemia and atherosclerosis. They act by inhibiting of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, an enzyme responsible for the conversion of HMG-CoA to mevalonate in cholesterol biosynthesis. Due to their ability to reduce low-density lipoproteins (LDL) levels more than other cholesterol-lowering drugs, they have become the drugs most often prescribed in the treatment of atherosclerosis.
基金Special Scientific Research Project of Laboratory Animals,Grant/Award Number:SYDW[2018]14,SYDW[2020]01 and SYDW-KY[2021]03。
文摘Background:To explore potential biomarkers for early diagnosis of atherosclerosis(AS)and provide basic data for further research on AS,the characteristics of serum metabolomics during the progression of AS in mini-pigs were observed dynamically.Methods:An AS model in Bama miniature pigs was established by a high-cholesterol and high-fat diet.Fasting serum samples were collected monthly for metabolomics and serum lipid detection.At the end of the treatment period,pathological analysis of the abdominal aorta and coronary artery was performed to evaluate the lesions of AS,thereby distinguishing the susceptibility of mini-pigs to AS.The metabolomics was de-tected using a high-resolution untargeted metabolomic approach.Statistical analysis was used to identify metabolites associated with AS susceptibility.Results:Based on pathological analysis,mini-pigs were divided into two groups:a susceptible group(n=3)and a non-susceptible group(n=6).A total of 1318 metabo-lites were identified,with significant shifting of metabolic profiles over time in both groups.Dynamic monitoring analysis highlighted 57 metabolites that exhibited an ob-vious trend of differential changes between two groups with the advance of time.The KEGG(Kyoto Encyclopedia of Genes and Genomes)pathway enrichment analysis in-dicated significant disorders in cholesterol metabolism,primary bile acid metabolism,histidine metabolism,as well as taurine and hypotaurine metabolism.Conclusions:During the progression of AS in mini-pigs induced by high-cholesterol/high-fat diet,the alterations in serum metabolic profile exhibited a time-dependent pattern,accompanied by notable disturbances in lipid metabolism,cholesterol me-tabolism,and amino acid metabolism.These metabolites may become potential bio-markers for early diagnosis of AS.
基金funded by the Chinese Academy of Medical Sciences(CAMS)Innovation Fund for Medical Sciences(2021-I2M-1-010,2019-I2M-2-003,and 2017-I2M-1-004)National Natural Science Foundation of China(82030102,12126602,82330106,82322059,and 91857118)+1 种基金National High Level Hospital Clinical Research Funding(2022-GSP-GG-1,and 2022-GSP-GG-2)National Key Research and Development Program of China(2021YFC2500500).
文摘BACKGROUND Previous studies have demonstrated the benefits of ideal cardiovascular health(CVH) in reducing cardiovascular risk.However,its role in subclinical atherosclerosis(SA) progression remains unclear.We aim to examine the association of CVH,estimated by the American Heart Association's new Life's Essential 8(LE8),with the progression of SA.METHODS This prospective cohort study was conducted among 972 asymptomatic Chinese participants and followed up for5.7 years.The LE8 score(range,0–100) consisted of blood pressure,lipids,glucose,body mass index,smoking status,diet health,physical activity and sleep health was evaluated in 1998 and 2008–2009.Progression of SA was determined by carotid plaque and coronary artery calcification(CAC) in 2008–2009 and 2013–2014.Log-binomial regression model was used to estimate the association of LE8 score with SA progression.RESULTS Each 10 points increment in LE8 score was associated with 15.2%(RR:0.848,95% CI:0.797–0.902),17.7%(RR:0.823,95% CI:0.766–0.884) and 12.0%(RR:0.880,95% CI:0.845–0.916) lower risks of carotid plaque,CAC and overall SA progression,respectively.Compared with participants with non-ideal CVH at both visits,the participants with ideal CVH at both visits had39.1%(RR:0.609,95% CI:0.494–0.752),41.0%(RR:0.590,95% CI:0.456–0.764) and 29.7%(RR:0.703,95% CI:0.598–0.825) lower risks of carotid plaque,CAC and overall SA progression,respectively.CONCLUSIONS Higher LE8 scores were associated with lower risks of SA progression.Besides,long-term maintenance of optimal CVH was more beneficial to prevent SA progression.
基金supported by the National Key R&D Program of China(YFD2100103).
文摘Atherosclerosis,as the most prevalent form of cardiovascular disease,is characterized by oxidized lowdensity lipoprotein(ox-LDL)accumulation in the vascular wall,increased inflammation of the large arteries,dysfunction of the endothelial cells(ECs)and vascular smooth muscle cells(VSMCs),which may eventually lead to the formation of plaques.Xanthophylls,one of the main groups of carotenoids,have been proposed as preventive agents or adjunct therapies to prevent and slow the progression of atherosclerosis due to their cardioprotective properties.However,the underlying preventive mechanism of action of xanthophylls on the pathogenesis of atherosclerosis remains unclear,and clinical evidence of the effect of xanthophylls on atherosclerosis have not yet been summarized and critically reviewed.In this regard,we conducted a comprehensive literature search in four scientific databases(Pub Med,Google Scholar,Science Direct and Web of Science)and carefully analyzed the existing evidence to provide meaningful insights on the association between xanthophylls and atherosclerosis from various aspects.Based on the evidence from in vitro and in vivo studies,we explored several potential mechanisms,including antioxidant effect,anti-inflammatory effect,regulation of lipid metabolism,and modulation of ECs and VSMCs dysfunction,and we found that a clear picture of regulatory pathways of xanthophylls on atherosclerosis prevention and treatment is still lacking.In addition,epidemiological studies suggested the possible relationship among high dietary intake of xanthophylls,high plasma/serum xanthophylls and a reduced risk of atherosclerosis.Direct evidence from interventional studies investigating the effect of xanthophylls on atherosclerosis is very sparse,whilst indirect clinical evidence was only limited to astaxanthin and lutein.Therefore,well-designed long-term randomized controlled trials(RCTs)are highly recommended for future studies to investigate the effective dose of different xanthophylls on atherosclerosis prevention and their possible ancillary effect in conjunction with drug therapies on different stages of atherosclerosis.
基金the Shanghai General Hospital Clinical Center Laboratory Animal Welfare&Ethics Committee(License number:2023AW017).
文摘Foam cells play a pivotal role in the progression of atherosclerosis progression by triggering inflammation within arterial walls.They release inflammatory molecules that attract additional immune cells,leading to further macrophage recruitment and plaque development.In this study,we develop an osteopontin(OPN)antibody-conjugated niobium carbide(Nb_(2)C-aOPN)MXenzyme designed to selectively target and mildly ablate foam cells while reducing inflammation in the plaque microenvironment.This approach utilizes photonic hyperthermia to decrease plaque size by enhancing cholesterol regulation through both passive cholesterol outflow and positive cholesterol efflux.Nb_(2)C-aOPN MXenzyme exhibits multiple enzyme-mimicking properties,including catalase,superoxide dismutase,peroxidase and glutathione peroxidase,and acts as a scavenger for reactive oxygen and nitrogen species.The inhibition of reactive oxygen and nitrogen species synergizes with photothermal ablation to promote positive cholesterol efflux,leading to reduced macrophage recruitment and a shift in macrophage phenotype from M1 to M2.This integrative strategy on cholesterol regulation and anti-inflammation highlights the potential of multifunctional 2D MXenzyme-based nanomedicine in advancing atherosclerotic regression.
基金supported by the National Natural Science Foundation of China(No.81573957,No.81874461 and No.82070307).
文摘Atherosclerosis(AS)is characterized by impairment and apoptosis of endothelial cells,continuous systemic and focal inflammation and dysfunction of vascular smooth muscle cells,which is documented as the traditional cellular paradigm.However,the mechanisms appear much more complicated than we thought since a bulk of studies on efferocytosis,transdifferentiation and novel cell death forms such as ferroptosis,pyroptosis,and extracellular trap were reported.Discovery of novel pathological cellular landscapes provides a large number of therapeutic targets.On the other side,the unsatisfactory therapeutic effects of current treatment with lipid-lowering drugs as the cornerstone also restricts the efforts to reduce global AS burden.Stem cell-or nanoparticle-based strategies spurred a lot of attention due to the attractive therapeutic effects and minimized adverse effects.Given the complexity of pathological changes of AS,attempts to develop an almighty medicine based on single mechanisms could be theoretically challenging.In this review,the top stories in the cellular landscapes during the initiation and progression of AS and the therapies were summarized in an integrated perspective to facilitate efforts to develop a multi-targets strategy and fill the gap between mechanism research and clinical translation.The future challenges and improvements were also discussed.
基金support from the Natural Science Foundation of Henan,China(Grant No.:202300410446)the National Natural Science Foundation of China(Grant No.:82071950).
文摘Atherosclerosis(AS)is a chronic inflammatory disease of large and medium-sized arteries that leads to ischemic heart disease,stroke,and peripheral vascular disease.Despite the current treatments,mortality and disability still remain high.Sonodynamic therapy(SDT),a non-invasive and localized methodology,has been developed as a promising new treatment for inhibiting atherosclerotic progression and stabilizing plaques.Promising progress has been made through cell and animal assays,as well as clinical trials.For example,the effect of SDT on apoptosis and autophagy of cells in AS,especially macrophages,and the concept of non-lethal SDT has also been proposed.In this review,we summarize the ultrasonic parameters and known sonosensitizers utilized in SDT for AS;we elaborate on SDT's therapeutic effects and mechanisms in terms of macrophages,T lymphocytes,neovascularization,smooth muscle cells,lipid,extracellular matrix and efferocytosis within plaques;additionally,we discuss the safety of SDT.A comprehensive summary of the confirmed effects of SDT on AS is conducted to establish a framework for future researchers.
基金funded by the Russian Science Foundation(Grant No.23-45-00031).
文摘Atherosclerosis is extremely widespread.Traditionally,it is considered a disease of older people,who most often experience problems with the heart and blood vessels.While much attention from the scientific community has been paid to studying the association between aging and atherosclerosis,as well as its consequences,there is evidence that atherosclerosis occurs at an early age.Atherosclerosis may form both during intrauterine development and in childhood.Nutrition plays an important role in childhood atherosclerosis,along with previous infectious diseases and excess weight of both the child and the mother.In the present review,we examined the development of atherosclerosis and the prerequisites in childhood.
基金supported by Fundamental Research Funds for the Central Public Welfare Research Institutes(ZZ11-061,ZZ14-YQ-007)the National Natural Science Foundation of China(82004193)+1 种基金CACMS Innovation Fund(CI 2021A00914)Irma and Paul Milstein Program for Senior Health of Milstein Medical Asian American Partnership Foundation。
文摘Atherosclerosis remains a great threat to human health worldwide.Previous studies found that tetramethylpyrazine(TMP)and paeonifl orin(PF)combination(TMP-PF)exerts anti-atherosclerotic effects in vitro.However,whether TMP-PF improves atherosclerosis in vivo needs further exploration.The present study aims to assess the anti-atherosclerotic properties of TMP-PF in ApoE^(-/-)mice and explore the related molecule mechanisms.Results showed that TMP and high-dose TMP-PF decreased serum triglyceride and low-density lipoprotein cholesterol levels,suppressed vascular endothelial growth factor receptor 2(VEGFR2)and nuclear receptor subfamily 4 group A member 1(NR4A1)expression in aortic tissues,inhibited plaque angiogenesis,reduced plaque areas,and alleviated atherosclerosis in ApoE^(-/-)mice.Also,TMP-PF exhibited a better modulation effect than TMP or PF alone.However,NR4A1 agonist abolished the anti-atherosclerotic effects of TMP-PF.In conclusion,TMP-PF was first found to alleviate atherosclerosis progression by reducing hyperlipemia and inhibiting plaque angiogenesis via the NR4A1/VEGFR2 pathway,indicating that TMP-PF had a positive effect on reducing hyperlipemia and attenuating atherosclerosis development.
基金supported by the National Basic Research Program of China(2013CB127106)。
文摘Free cholesterol has been considered to be a critical risk factor of nonalcoholic fatty liver disease(NAFLD).It remains unknown whether dietary intake of condensed tannins(CTs)have distinguishable effects to alleviate liver damage caused by a high cholesterol diet.Male C57BL/6 mice were fed a high cholesterol diet for 6 weeks,and given CTs treatment at a dosage of 200 mg/(kg·day)at the same time.The results indicated that compared with mice fed a normal diet,a high cholesterol diet group resulted in significant weight loss,dysregulation of lipid metabolism in blood and liver,and oxidative stress in the liver,but CTs treatment dramatically reversed these negative effects.Hematoxylin and eosin(H&E)staining and frozen section observation manifested that CTs treatment could effectively reduce the deposition of liver cholesterol and tissue necrosis caused by high cholesterol intake.CTs alleviated liver injury mainly by regulating the expression of related genes in cholesterol metabolism pathway and AMPK phosphorylation.Our results confirmed that CTs have remarkable cholesterol lowering and anti-liver injury effects in vivo.
基金supported by the National Natural Science Foundation of China(Grant Nos.:U21A20343,82160088,81870225,81870332,81700404,82271626,and 82260088)the Natural Science Foundation of Ningxia Autonomous Region,China(Grant Nos.:2020AAC02021,2020AAC02038,and 2022AAC05025)+5 种基金the Key Research and Development Projects in Ningxia Autonomous Region,China(Grant Nos.:2020BFH02003,2021BEG02033,2020BEG03008,and 2022BFH02013)the Basic Scientific Research Operating Expenses from the Public Welfare Research Institutes at the Central Level of the Chinese Academy of Medical Sciences,China(Grant No.:2019PT330002)the Ningxia Science and Technology Leading Talent Project,China(Grant No.:KJT2017007)the Natural Science Foundation of Hunan Province,China(Grant No.:2022JJ40698)the School-level Special Talent Launching Project of Ningxia Medical University,China(Grant No.:XT2018015)the Open Bidding for Selecting the Best Candidates Program of Ningxia Medical University,China(Grant No.:XJKF230106).
文摘Rosuvastatin (RVS) is an excellent drug with anti-inflammatory and lipid-lowering properties in the academic and medical fields. However, this drug faces a series of challenges when used to treat atherosclerosis caused by hyperhomocysteinemia (HHcy), including high oral dosage, poor targeting, and long-term toxic side effects. In this study, we applied nanotechnology to construct a biomimetic nano-delivery system, macrophage membrane (Møm)-coated RVS-loaded Prussian blue (PB) nanoparticles (MPR NPs), for improving the bioavailability and targeting capacity of RVS, specifically to the plaque lesions associated with HHcy-induced atherosclerosis. In vitro assays demonstrated that MPR NPs effectively inhibited the Toll-like receptor 4 (TLR4)/hypoxia-inducible factor-1α (HIF-1α)/nucleotide-binding and oligomerization domain (NOD)-like receptor thermal protein domain associated protein 3 (NLRP3) signaling pathways, reducing pyroptosis and inflammatory response in macrophages. Additionally, MPR NPs reversed the abnormal distribution of adenosine triphosphate (ATP)-binding cassette transporter A1 (ABCA1)/ATP binding cassette transporter G1 (ABCA1)/ATP binding cassette transporter G1 (ABCG1) caused by HIF-1α, promoting cholesterol efflux and reducing lipid deposition. In vivo studies using apolipoprotein E knockout (ApoE^(−/−)) mice confirmed the strong efficacy of MPR NPs in treating atherosclerosis with favorable biosecurity, and the mechanism behind this efficacy is believed to involve the regulation of serum metabolism and the remodeling of gut microbes. These findings suggest that the synthesis of MPR NPs provides a promising nanosystem for the targeted therapy of HHcy-induced atherosclerosis.