[Objectives] This study was conducted to investigate the mechanism of action of glyasperin A in the treatment of atherosclerosis using a network pharmacology approach. [Methods] Targets related to atherosclerosis were...[Objectives] This study was conducted to investigate the mechanism of action of glyasperin A in the treatment of atherosclerosis using a network pharmacology approach. [Methods] Targets related to atherosclerosis were searched in GeneCards database. An active ingredient-disease-target network was constructed by Cytoscape 3.7.1. A target protein interaction network was constructed by String database. Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed on the DAVID database. [Results] Glyasperin A acted on 36 atherosclerosis-related targets, and the biofunctional and pathway enrichment analyses showed that it was mainly involved in response to xenobiotic stimulus, drug transport across blood-brain barrier, lipid oxidation, barrier, and lipid oxidation, etc. The results showed that glyasperin A acted on 36 atherosclerosis-related targets. The biofunctional and pathway enrichment analyses showed that it was mainly involved in response to xenobiotic stimulus, drug transport across blood-brain barrier, lipid oxidation, positive regulation of protein localization to nucleus, and hepoxilin biosynthetic process, and it played an anti-fatigue role through signal pathways such as serotonergic synapse, efferocytosis, arachidonic acid metabolism, chemical carcinogenesis-receptor activation and platelet activation. [Conclusions] Glyasperin A has multi-target and multi-pathway effects in the treatment of atherosclerosis. This study provides reference for further research on glyasperin A in the treatment of atherosclerosis.展开更多
Atherosclerosis is a chronic inflammatory disease arising from lipids, specifically low-density lipoproteins, and leukocytes. Following the activation of endothelium with the expression of adhesion molecules and monoc...Atherosclerosis is a chronic inflammatory disease arising from lipids, specifically low-density lipoproteins, and leukocytes. Following the activation of endothelium with the expression of adhesion molecules and monocytes, inflammatory cytokines from macrophages, and plasmacytoid dendritic cells, high levels of interferon(IFN)-α and β are generated upon the activation of tolllike receptor-9, and T-cells, especially the ones with Th1 profile, produce pro-inflammatory mediators such as IFN-γ and upregulate macrophages to adhere to the endothelium and migrate into the intima. This review presents an exhaustive account for the role of immunecells in the atherosclerosis.展开更多
Inflammation plays an essential role in the development of atherosclerosis. The initiation and growth of atherosclerotic plaques is accompanied by recruitment of inflammatory and precursor cells from the bloodstream a...Inflammation plays an essential role in the development of atherosclerosis. The initiation and growth of atherosclerotic plaques is accompanied by recruitment of inflammatory and precursor cells from the bloodstream and their differentiation towards pro-inflammatory phenotypes. This process is orchestrated by the production of a number of pro-inflammatory cytokines and chemokines. Human arterial intima consists of structurally distinct leaflets, with a proteoglycan-rich layer lying immediately below the endothelial lining. Recent studies reveal the important role of stellate pericyte-like cells(intimal pericytes) populating the proteoglycan-rich layer in the development of atherosclerosis. During the pathologic process, intimal pericytes may participate in the recruitment of inflammatory cells by producing signalling molecules and play a role in the antigen presentation. Intimal pericytes are also involved in lipid accumulation and the formation of foam cells. This review focuses on the role of pericytelike cells in the development of atherosclerotic lesions.展开更多
Summary: The relationship between immune vasculitis and atherosclerosis was studied. The experimental model of weanling rabbits for immune vasculitis was reproduced by intravenous injection of 10% bovine serum albumi...Summary: The relationship between immune vasculitis and atherosclerosis was studied. The experimental model of weanling rabbits for immune vasculitis was reproduced by intravenous injection of 10% bovine serum albumin. There were 6 groups: group A, 25 weanling rabbits with immune vasculitis subject to coronary arteriography; group B, 10 normal mature rabbits subject to coronary arteriography; group C, 10 weanling rabbits subject to coronary arteriography, group D, 8 weanling rabbits with vasculitis and cholesterol diet; group E, 8 weanling rabbits receiving single cholesterol diet; group F: 8 weanling rabbits receiving basic diet. Four weeks later, coronary arteriography was performed in groups A, B and C. The rabbits in groups D, E and F were sacrificed for the study of pathological changes in the coronary artery after 12 weeks. The results showed that the dilatation of coronary artery occurred in 6 rabbits of group A, but in groups B and C, no dilatation of coronary artery appeared. In comparison with group E, more severe atherosclerosis occurred in group D, showing the thickened plaque, fibrous sclerosis and atherosclerotic lesion. Percentage of plaques covering aortic intima, incidence of atherosclerosis of small coronary arteries and degree of stenosis of coronary arteries were significantly higher in group D than in group E (P〈0.01). No atherosclerosis changes were found in group F. It was concluded that in the acute phase, the serum immune vasculitis can induce the dilatation of coronary artery of some weanling rabbits, and aggravate the formation of atherosclerosis in rabbits fed with cholesterol diet. Immune vasculitis is a new risk factor of atherosclerosis and ischemic heart disease.展开更多
Based on the biological immune concept, immune response mechanism and expert system, a dynamic and intelligent scheduling model toward the disturbance of the production such as machine fault,task insert and cancel etc...Based on the biological immune concept, immune response mechanism and expert system, a dynamic and intelligent scheduling model toward the disturbance of the production such as machine fault,task insert and cancel etc. Is proposed. The antibody generation method based on the sequence constraints and the coding rule of antibody for the machining procedure is also presented. Using the heuristic antibody generation method based on the physiology immune mechanism, the validity of the scheduling optimization is improved, and based on the immune and expert system under the event-driven constraints, not only Job-shop scheduling problem with multi-objective can be solved, but also the disturbance of the production be handled rapidly. A case of the job-shop scheduling is studied and dynamic optimal solutions with multi-objective function for agile manufacturing are obtained in this paper. And the event-driven dynamic rescheduling result is compared with right-shift rescheduling and total rescheduling.展开更多
Cetuximab is a chimeric immunoglobulin G1 mono-clonal antibody that targets the ligand-binding domain of the epidermal growth factor receptor and inhibits downstream intra-cellular signals. Research has shown that cet...Cetuximab is a chimeric immunoglobulin G1 mono-clonal antibody that targets the ligand-binding domain of the epidermal growth factor receptor and inhibits downstream intra-cellular signals. Research has shown that cetuximab can stimulate the autoimmune system and produce antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity reactions, which can recruit cytotoxic lymphocytes to attack and kill cancer cells. Cetuximab is mainly indicated for patients with epidermal growth factor receptor-positive metastatic colorectal cancer who fail to respond to both irinotecan-and oxaliplatin-based regimens. The efficacy and safety of cetuximab as monotherapy or in combination with other treatment options were evaluated in a series of phase II and phase III trials. Identifying the clinical and molecular markers that can predict which patient groups may best benefit from cetuximab treatment is key to improving patient outcomes and avoiding unnecessary toxicities and costs. Herein, we discuss the mechanisms of action by which cetuximab exerts its antitumor effects, as well as the possible clinical and molecular markers that may help predict therapeutic benefits for patients with metastatic colorectal cancer.展开更多
Atherosclerotic cardiovascular diseases, chronic inflam-matory diseases of multifactorial etiology, are the lead-ing cause of death worldwide. In the last decade, more infectious agents, labeled as "infectious bu...Atherosclerotic cardiovascular diseases, chronic inflam-matory diseases of multifactorial etiology, are the lead-ing cause of death worldwide. In the last decade, more infectious agents, labeled as "infectious burden", rather than any single pathogen, have been showed to con-tribute to the development of atherosclerosis through different mechanisms. Some microorganisms, such as Chlamydia pneumoniae(C. pneumoniae), human cytomegalovirus, etc. may act directly on the arterial wall contributing to endothelial dysfunction, foam cell formation, smooth muscle cell proliferation, platelet ag-gregation as well as cytokine, reactive oxygen specie, growth factor, and cellular adhesion molecule produc-tion. Others, such as Helicobacter pylori(H. pylori), in-fluenza virus, etc. may induce a systemic inflammation which in turn may damage the vascular wall(e.g., by cytokines and proteases). Moreover, another indirect mechanism by which some infectious agents(such as H. pylori, C. pneumoniae, periodontal pathogens, etc.) may play a role in the pathogenesis of atherosclero-sis is molecular mimicry. Given the complexity of the mechanisms by which each microorganism may con-tribute to atherosclerosis, defining the interplay of moreinfectious agents is far more difficult because the pro-atherogenic effect of each pathogen might be ampli-fied. Clearly, continued research and a greater aware-ness will be helpful to improve our knowledge on the complex interaction between the infectious burden and atherosclerosis.展开更多
Mounting evidence supports that a newly identified regulatory T cell (Treg),CD4+LAP+ Treg,is associated with oral tolerance induction and following inhibition of atherosclerosis,but little is described about whether n...Mounting evidence supports that a newly identified regulatory T cell (Treg),CD4+LAP+ Treg,is associated with oral tolerance induction and following inhibition of atherosclerosis,but little is described about whether nasal tolerance to antigen likewise induces the novel Tregs production and the relevant antiatherosclerotic benefit.We investigated the effect of nasal administration of heat shock protein-60 (HSP60) on atherogenesis.HSP60 or phosphate buffer solution (PBS) was nasally adminis-tered to six-week-old male ApoE-/-mice.At the 10th week after the nasal administration,there was a significant decrease in atherosclerotic plaque areas of aortic roots in the HSP60-treated mice as com-pared with those in the PBS-treated mice.Atherosclerosis suppression was accompanied with a signifi-cant increase in CD4+LAP+ and CD4+CD25+Foxp3+ Tregs and a concurrently increased production of TGF-β in the HSP60-treated mice.The protective effect of HSP60 was offset by injection of anti-TGF-βantibody.It is concluded that nasal administration of HSP60 can inhibit atherosclerotic formation through immune tolerance which is established by Tregs depending on the induction of anti-inflammatory cytokine TGF-β.Immune tolerance induced by nasal administration of HSP60 may provide an alternative therapeutic method for atherosclerosis.展开更多
BACKGROUND Yigong San(YGS)is a representative prescription for the treatment of digestive disorders,which has been used in clinic for more than 1000 years.However,the mechanism of its anti-gastric cancer and regulate ...BACKGROUND Yigong San(YGS)is a representative prescription for the treatment of digestive disorders,which has been used in clinic for more than 1000 years.However,the mechanism of its anti-gastric cancer and regulate immunity are still remains unclear.AIM To explore the mechanism of YGS anti-gastric cancer and immune regulation.METHODS Firstly,collect the active ingredients and targets of YGS,and the differentially expressed genes of gastric cancer.Secondly,constructed a protein-protein interaction network between the targets of drugs and diseases,and screened hub genes.Then the clinical relevance,mutation and repair,tumor microenvironment and drug sensitivity of the hub gene were analyzed.Finally,molecular docking was used to verify the binding ability of YGS active ingredient and hub genes.RESULTS Firstly,obtained 55 common targets of gastric cancer and YGS.The Kyoto Encyclopedia of Genes and Genomes screened the microtubule-associated protein kinase signaling axis as the key pathway and IL6,EGFR,MMP2,MMP9 and TGFB1 as the hub genes.The 5 hub genes were involved in gastric carcinogenesis,staging,typing and prognosis,and their mutations promote gastric cancer progression.Finally,molecular docking results confirmed that the components of YGS can effectively bind to therapeutic targets.CONCLUSION YGS has the effect of anti-gastric cancer and immune regulation.展开更多
Objective:To explore the pharmacological basis of the Compound Xintahua (XTH) action in Atherosclerosis (AS) therapy, a network interaction analysis was conducted at the molecular level. Methods:TCMSP database and lit...Objective:To explore the pharmacological basis of the Compound Xintahua (XTH) action in Atherosclerosis (AS) therapy, a network interaction analysis was conducted at the molecular level. Methods:TCMSP database and literature mining were used to analyze the main effective components in XTH, and the targets were predicted by Swiss Target Prediction server according to AS mechanism. The potential targets were introduced into the FunRich database for target annotation and analysis, the path analysis was finally performed based on the FunRich databases. To determine the mechanism of action of XTH. Results:A total of 316 compounds, 117 targets, and 290 signaling pathways were identified. And 16 effective compounds, 39 common targets, and 43 pathways were associated with AS. Conclusions:The results showed that the flavonoids, phenols, organic acids and terpenoids of XTH could participate in the process of lipid metabolism, angiogenesis, oxidation, inflammation, endocrine metabolism, cell proliferation and apoptosis, It was further found that they could play the role of anti-Atherosclerosis through multi-component, multi-target, and multi-channel synergistically.展开更多
Diabetic kidney disease is one of the most severe chronic microvascular complications of diabetes and a primary cause of end-stage renal disease.Clinical studies have shown that renal inflammation is a key factor dete...Diabetic kidney disease is one of the most severe chronic microvascular complications of diabetes and a primary cause of end-stage renal disease.Clinical studies have shown that renal inflammation is a key factor determining kidney damage during diabetes.With the development of immunological technology,many studies have shown that diabetic nephropathy is an immune complex disease,and that most patients have immune dysfunction.However,the immune response associated with diabetic nephropathy and autoimmune kidney disease,or caused by ischemia or infection with acute renal injury,is different,and has a complicated pathological mechanism.In this review,we discuss the pathogenesis of diabetic nephropathy in immune disorders and the intervention mechanism,to provide guidance and advice for early intervention and treatment of diabetic nephropathy.展开更多
The important role of atherosclerosis in pathophysiology of Alzheimer's Disease has become evident.Mechanisms such as hyperlipidemia,inflammation,abdominal obesity and insulin resistance are important yet they may...The important role of atherosclerosis in pathophysiology of Alzheimer's Disease has become evident.Mechanisms such as hyperlipidemia,inflammation,abdominal obesity and insulin resistance are important yet they may not fully explain the specific involvement of the Circle of Willis in these pathologies.The Circle of Wills is a complex geometrical structure which has several areas with different curvature as well as various branching angles of vessels composing the circle.The hemodynamics in this region should take into account the Dean number which indicates the influence of curvature on the resistance to blood flow.Thus,areas with various curvature and angles may have different hemodynamics and there are certain areas in the Circle of Willis that are more likely to develop atherosclerotic changes.Therefore,this could suggest the novel pathophysiological pathway resulting from the geometric peculiarities of the Circle of Willis.One of the directions of future research is to examine whether specific areas of the Circle of Willis are more likely to develop atherosclerotic changes compared to other ones.Selective areas of the Circle of Willis affected by atherosclerotic changes could indicate the primary role of atherosclerosis promoting Alzheimer's disease although other pathophysiological mechanisms suggesting the opposite direction should be also examined in prospective studies.展开更多
Atherosclerosis is a chronic vascular disease and the most common pathological change of cardiovascular disease.Its pathogenesis is closely related to inflammation,oxidative stress,lipid accumulation,and calcinosis.Te...Atherosclerosis is a chronic vascular disease and the most common pathological change of cardiovascular disease.Its pathogenesis is closely related to inflammation,oxidative stress,lipid accumulation,and calcinosis.Tetramethylpyrazine plays an anti-atherosclerotic role by regulating lipid metabolism,inhibiting foam cell formation,alleviating inflammation,inhibiting vascular calcification and abnormal platelet activation,and has a cardiovascular protective effect.Therefore,this paper summarized the research progress of the anti-atherosclerosis effect and mechanism of tetramethylpyrazine.展开更多
Obesity and overweight are widespread issues in adults,children,and adolescents globally,and have caused a noticeable rise in obesity-related complications such as type 2 diabetes mellitus(T2DM).Chronic low-grade infl...Obesity and overweight are widespread issues in adults,children,and adolescents globally,and have caused a noticeable rise in obesity-related complications such as type 2 diabetes mellitus(T2DM).Chronic low-grade inflammation is an important promotor of the pathogenesis of obesity-related T2DM.This proinflammatory activation occurs in multiple organs and tissues.Immune cellmediated systemic attack is considered to contribute strongly to impaired insulin secretion,insulin resistance,and other metabolic disorders.This review focused on highlighting recent advances and underlying mechanisms of immune cell infiltration and inflammatory responses in the gut,islet,and insulin-targeting organs(adipose tissue,liver,skeletal muscle)in obesity-related T2DM.There is current evidence that both the innate and adaptive immune systems contribute to the development of obesity and T2DM.展开更多
Hepatitis B virus(HBV)reactivation is a clinically significant challenge in disease management.This review explores the immunological mechanisms underlying HBV reactivation,emphasizing disease progression and manageme...Hepatitis B virus(HBV)reactivation is a clinically significant challenge in disease management.This review explores the immunological mechanisms underlying HBV reactivation,emphasizing disease progression and management.It delves into host immune responses and reactivation’s delicate balance,spanning innate and adaptive immunity.Viral factors’disruption of this balance,as are interac-tions between viral antigens,immune cells,cytokine networks,and immune checkpoint pathways,are examined.Notably,the roles of T cells,natural killer cells,and antigen-presenting cells are discussed,highlighting their influence on disease progression.HBV reactivation’s impact on disease severity,hepatic flares,liver fibrosis progression,and hepatocellular carcinoma is detailed.Management strategies,including anti-viral and immunomodulatory approaches,are critically analyzed.The role of prophylactic anti-viral therapy during immunosuppressive treatments is explored alongside novel immunotherapeutic interventions to restore immune control and prevent reactivation.In conclusion,this compre-hensive review furnishes a holistic view of the immunological mechanisms that propel HBV reactivation.With a dedicated focus on understanding its implic-ations for disease progression and the prospects of efficient management stra-tegies,this article contributes significantly to the knowledge base.The more profound insights into the intricate interactions between viral elements and the immune system will inform evidence-based approaches,ultimately enhancing disease management and elevating patient outcomes.The dynamic landscape of management strategies is critically scrutinized,spanning anti-viral and immunomodulatory approaches.The role of prophylactic anti-viral therapy in preventing reactivation during immunosuppressive treatments and the potential of innovative immunotherapeutic interventions to restore immune control and proactively deter reactivation.展开更多
Ovarian cancer is one of the three major malignant tumors in gynecology, with increasing incidence and mortality rates. Currently, the main treatment methods remain surgical intervention in combination with chemothera...Ovarian cancer is one of the three major malignant tumors in gynecology, with increasing incidence and mortality rates. Currently, the main treatment methods remain surgical intervention in combination with chemotherapy. However, due to its high recurrence rate and the risk of drug resistance, the overall prognosis is poor. Ovarian cancer has been identified as an immunegenic tumor, and in recent years, with the continued advancement of research into immune evasion mechanisms, immunotherapy has emerged as a groundbreaking treatment modality. This article will focus on the immune escape mechanisms and their application in ovarian cancer, providing a comprehensive overview of its current status and the challenges it faces.展开更多
Acne is a chronic inflammatory skin disease involving hair follicle sebaceous glands,which is characterized by acne,papules,pustules,nodules,cysts and so on.The disorder of immune inflammation is the key link.A variet...Acne is a chronic inflammatory skin disease involving hair follicle sebaceous glands,which is characterized by acne,papules,pustules,nodules,cysts and so on.The disorder of immune inflammation is the key link.A variety of factors participate in the immune inflammatory response of acne and interact with each other,leading to the occurrence and development of acne inflammation.Acupuncture can regulate the immune and inflammatory response through many links and improve the skin lesions.This study explains potential mechanisms of acupuncture in the treatment of acne by regulating the body's immune inflammatory response,in order to provide new ideas.展开更多
Turbot Scophthalmus maximus is an important mariculture fish species with high economic value.However,the bacterial diseases caused by Vibrio anguillarum infection bring huge economic losses to the turbot aquaculture ...Turbot Scophthalmus maximus is an important mariculture fish species with high economic value.However,the bacterial diseases caused by Vibrio anguillarum infection bring huge economic losses to the turbot aquaculture industry.To understand the immune response of the turbot against V.anguillarum infection and to explore novel immune-related genes,the transcriptome analysis of turbot spleen and gills were conducted after V.anguillarum infection.Differentially expressed genes(DEGs)were identified in spleen and gill of the turbot amounted to 17261 and 16436,respectively.A large number of immunerelated DEGs were enriched in cytokine-cytokine receptor interaction signaling pathway,and the others by the kyoto encyclopedia of genes and genomes(KEGG)enrichment.The gene ontology(GO)classification analysis revealed that V.anguillarum infection had the greatest effect on biological processes and cellular components.Twelve immune-related DEGs were identified in the spleen(cstl.1,egfl6,lamb21,v2rx4,calcr,and gpr78a)and gills(ghra,sh3gl2a,cst12,inhbaa,cxcl8,and il-1b)by heat map.The proteinprotein interaction(PPI)networks were constructed to analyze the immune mechanism.The results demonstrate that the maturation and antigen processing of major histocompatibility complex(MHC)class II molecule,and calcitonin-or adrenomedullin-regulated physiological activity were important events in the immunity of turbot against V.anguillarum infection.In the gills,the protein interactions in TGF-βsignaling pathway,production of inflammatory factors,and endocytosis regulation were most significant.Our research laid a foundation for discovering novel immune-related genes and enriching the knowledge of immune mechanisms of turbot against V.anguillarum infection.展开更多
The primary mechanism of secondary injury after cerebral ischemia may be the brain inflammation that emerges after an ischemic stroke,which promotes neuronal death and inhibits nerve tissue regeneration.As the first i...The primary mechanism of secondary injury after cerebral ischemia may be the brain inflammation that emerges after an ischemic stroke,which promotes neuronal death and inhibits nerve tissue regeneration.As the first immune cells to be activated after an ischemic stroke,microglia play an important immunomodulatory role in the progression of the condition.After an ischemic stroke,peripheral blood immune cells(mainly T cells)are recruited to the central nervous system by chemokines secreted by immune cells in the brain,where they interact with central nervous system cells(mainly microglia)to trigger a secondary neuroimmune response.This review summarizes the interactions between T cells and microglia in the immune-inflammatory processes of ischemic stroke.We found that,during ischemic stroke,T cells and microglia demonstrate a more pronounced synergistic effect.Th1,Th17,and M1 microglia can co-secrete proinflammatory factors,such as interferon-γ,tumor necrosis factor-α,and interleukin-1β,to promote neuroinflammation and exacerbate brain injury.Th2,Treg,and M2 microglia jointly secrete anti-inflammatory factors,such as interleukin-4,interleukin-10,and transforming growth factor-β,to inhibit the progression of neuroinflammation,as well as growth factors such as brain-derived neurotrophic factor to promote nerve regeneration and repair brain injury.Immune interactions between microglia and T cells influence the direction of the subsequent neuroinflammation,which in turn determines the prognosis of ischemic stroke patients.Clinical trials have been conducted on the ways to modulate the interactions between T cells and microglia toward anti-inflammatory communication using the immunosuppressant fingolimod or overdosing with Treg cells to promote neural tissue repair and reduce the damage caused by ischemic stroke.However,such studies have been relatively infrequent,and clinical experience is still insufficient.In summary,in ischemic stroke,T cell subsets and activated microglia act synergistically to regulate inflammatory progression,mainly by secreting inflammatory factors.In the future,a key research direction for ischemic stroke treatment could be rooted in the enhancement of anti-inflammatory factor secretion by promoting the generation of Th2 and Treg cells,along with the activation of M2-type microglia.These approaches may alleviate neuroinflammation and facilitate the repair of neural tissues.展开更多
Atherosclerosis(AS) is a chronic inflammatory disease associated with high morbidity and mortality. The incidence of AS is increasing in the last decades. So development of safe and effective therapeutics for treating...Atherosclerosis(AS) is a chronic inflammatory disease associated with high morbidity and mortality. The incidence of AS is increasing in the last decades. So development of safe and effective therapeutics for treating AS has become prominently important. Although there are numerous chemical drugs available for treating AS, some drugs are not effective and some have serious side effects. Traditional Chinese medicine(TCM) has a long history for the prevention and treatment of AS due to its less side effects and superior efficacy. This paper describes the effectiveness and underlying mechanisms for prevention and treatment of AS by TCM or its active components. Some TCM, e.g. XuemaiNing, Tongxinluo and Salvia miltiorrhiza have been reported to have cardio-protective effect. Some active components of TCM, e.g. saikosaponin-A, kuwanon G, luteolin and β-elemene have been isolated from various TCM and demonstrated to have beneficial effects on prevention and treatment of AS.展开更多
基金Supported by Project of Science and Technology Department of Guizhou Province([2019]1401ZK[2021]-546)Guizhou Provincial Health Commission(gzwkj2021-464)。
文摘[Objectives] This study was conducted to investigate the mechanism of action of glyasperin A in the treatment of atherosclerosis using a network pharmacology approach. [Methods] Targets related to atherosclerosis were searched in GeneCards database. An active ingredient-disease-target network was constructed by Cytoscape 3.7.1. A target protein interaction network was constructed by String database. Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed on the DAVID database. [Results] Glyasperin A acted on 36 atherosclerosis-related targets, and the biofunctional and pathway enrichment analyses showed that it was mainly involved in response to xenobiotic stimulus, drug transport across blood-brain barrier, lipid oxidation, barrier, and lipid oxidation, etc. The results showed that glyasperin A acted on 36 atherosclerosis-related targets. The biofunctional and pathway enrichment analyses showed that it was mainly involved in response to xenobiotic stimulus, drug transport across blood-brain barrier, lipid oxidation, positive regulation of protein localization to nucleus, and hepoxilin biosynthetic process, and it played an anti-fatigue role through signal pathways such as serotonergic synapse, efferocytosis, arachidonic acid metabolism, chemical carcinogenesis-receptor activation and platelet activation. [Conclusions] Glyasperin A has multi-target and multi-pathway effects in the treatment of atherosclerosis. This study provides reference for further research on glyasperin A in the treatment of atherosclerosis.
文摘Atherosclerosis is a chronic inflammatory disease arising from lipids, specifically low-density lipoproteins, and leukocytes. Following the activation of endothelium with the expression of adhesion molecules and monocytes, inflammatory cytokines from macrophages, and plasmacytoid dendritic cells, high levels of interferon(IFN)-α and β are generated upon the activation of tolllike receptor-9, and T-cells, especially the ones with Th1 profile, produce pro-inflammatory mediators such as IFN-γ and upregulate macrophages to adhere to the endothelium and migrate into the intima. This review presents an exhaustive account for the role of immunecells in the atherosclerosis.
基金Supported by The Russian Scientific Foundation,Moscow,Russian Federation,No.14-15-00112
文摘Inflammation plays an essential role in the development of atherosclerosis. The initiation and growth of atherosclerotic plaques is accompanied by recruitment of inflammatory and precursor cells from the bloodstream and their differentiation towards pro-inflammatory phenotypes. This process is orchestrated by the production of a number of pro-inflammatory cytokines and chemokines. Human arterial intima consists of structurally distinct leaflets, with a proteoglycan-rich layer lying immediately below the endothelial lining. Recent studies reveal the important role of stellate pericyte-like cells(intimal pericytes) populating the proteoglycan-rich layer in the development of atherosclerosis. During the pathologic process, intimal pericytes may participate in the recruitment of inflammatory cells by producing signalling molecules and play a role in the antigen presentation. Intimal pericytes are also involved in lipid accumulation and the formation of foam cells. This review focuses on the role of pericytelike cells in the development of atherosclerotic lesions.
文摘Summary: The relationship between immune vasculitis and atherosclerosis was studied. The experimental model of weanling rabbits for immune vasculitis was reproduced by intravenous injection of 10% bovine serum albumin. There were 6 groups: group A, 25 weanling rabbits with immune vasculitis subject to coronary arteriography; group B, 10 normal mature rabbits subject to coronary arteriography; group C, 10 weanling rabbits subject to coronary arteriography, group D, 8 weanling rabbits with vasculitis and cholesterol diet; group E, 8 weanling rabbits receiving single cholesterol diet; group F: 8 weanling rabbits receiving basic diet. Four weeks later, coronary arteriography was performed in groups A, B and C. The rabbits in groups D, E and F were sacrificed for the study of pathological changes in the coronary artery after 12 weeks. The results showed that the dilatation of coronary artery occurred in 6 rabbits of group A, but in groups B and C, no dilatation of coronary artery appeared. In comparison with group E, more severe atherosclerosis occurred in group D, showing the thickened plaque, fibrous sclerosis and atherosclerotic lesion. Percentage of plaques covering aortic intima, incidence of atherosclerosis of small coronary arteries and degree of stenosis of coronary arteries were significantly higher in group D than in group E (P〈0.01). No atherosclerosis changes were found in group F. It was concluded that in the acute phase, the serum immune vasculitis can induce the dilatation of coronary artery of some weanling rabbits, and aggravate the formation of atherosclerosis in rabbits fed with cholesterol diet. Immune vasculitis is a new risk factor of atherosclerosis and ischemic heart disease.
基金This work was supported by National Science Foundation of Shanghai(02ZF14003)
文摘Based on the biological immune concept, immune response mechanism and expert system, a dynamic and intelligent scheduling model toward the disturbance of the production such as machine fault,task insert and cancel etc. Is proposed. The antibody generation method based on the sequence constraints and the coding rule of antibody for the machining procedure is also presented. Using the heuristic antibody generation method based on the physiology immune mechanism, the validity of the scheduling optimization is improved, and based on the immune and expert system under the event-driven constraints, not only Job-shop scheduling problem with multi-objective can be solved, but also the disturbance of the production be handled rapidly. A case of the job-shop scheduling is studied and dynamic optimal solutions with multi-objective function for agile manufacturing are obtained in this paper. And the event-driven dynamic rescheduling result is compared with right-shift rescheduling and total rescheduling.
基金This work was supported by the Major Research Program of the National Natural Science Foundation of China through Grant No. 91029705 and National Key Basic Research Program through Grant No. 2011CB933100.
文摘Cetuximab is a chimeric immunoglobulin G1 mono-clonal antibody that targets the ligand-binding domain of the epidermal growth factor receptor and inhibits downstream intra-cellular signals. Research has shown that cetuximab can stimulate the autoimmune system and produce antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity reactions, which can recruit cytotoxic lymphocytes to attack and kill cancer cells. Cetuximab is mainly indicated for patients with epidermal growth factor receptor-positive metastatic colorectal cancer who fail to respond to both irinotecan-and oxaliplatin-based regimens. The efficacy and safety of cetuximab as monotherapy or in combination with other treatment options were evaluated in a series of phase II and phase III trials. Identifying the clinical and molecular markers that can predict which patient groups may best benefit from cetuximab treatment is key to improving patient outcomes and avoiding unnecessary toxicities and costs. Herein, we discuss the mechanisms of action by which cetuximab exerts its antitumor effects, as well as the possible clinical and molecular markers that may help predict therapeutic benefits for patients with metastatic colorectal cancer.
基金Supported by Grants to R.Sessa from Center for Social Disease Research,"Sapienza"University,Rome
文摘Atherosclerotic cardiovascular diseases, chronic inflam-matory diseases of multifactorial etiology, are the lead-ing cause of death worldwide. In the last decade, more infectious agents, labeled as "infectious burden", rather than any single pathogen, have been showed to con-tribute to the development of atherosclerosis through different mechanisms. Some microorganisms, such as Chlamydia pneumoniae(C. pneumoniae), human cytomegalovirus, etc. may act directly on the arterial wall contributing to endothelial dysfunction, foam cell formation, smooth muscle cell proliferation, platelet ag-gregation as well as cytokine, reactive oxygen specie, growth factor, and cellular adhesion molecule produc-tion. Others, such as Helicobacter pylori(H. pylori), in-fluenza virus, etc. may induce a systemic inflammation which in turn may damage the vascular wall(e.g., by cytokines and proteases). Moreover, another indirect mechanism by which some infectious agents(such as H. pylori, C. pneumoniae, periodontal pathogens, etc.) may play a role in the pathogenesis of atherosclero-sis is molecular mimicry. Given the complexity of the mechanisms by which each microorganism may con-tribute to atherosclerosis, defining the interplay of moreinfectious agents is far more difficult because the pro-atherogenic effect of each pathogen might be ampli-fied. Clearly, continued research and a greater aware-ness will be helpful to improve our knowledge on the complex interaction between the infectious burden and atherosclerosis.
文摘Mounting evidence supports that a newly identified regulatory T cell (Treg),CD4+LAP+ Treg,is associated with oral tolerance induction and following inhibition of atherosclerosis,but little is described about whether nasal tolerance to antigen likewise induces the novel Tregs production and the relevant antiatherosclerotic benefit.We investigated the effect of nasal administration of heat shock protein-60 (HSP60) on atherogenesis.HSP60 or phosphate buffer solution (PBS) was nasally adminis-tered to six-week-old male ApoE-/-mice.At the 10th week after the nasal administration,there was a significant decrease in atherosclerotic plaque areas of aortic roots in the HSP60-treated mice as com-pared with those in the PBS-treated mice.Atherosclerosis suppression was accompanied with a signifi-cant increase in CD4+LAP+ and CD4+CD25+Foxp3+ Tregs and a concurrently increased production of TGF-β in the HSP60-treated mice.The protective effect of HSP60 was offset by injection of anti-TGF-βantibody.It is concluded that nasal administration of HSP60 can inhibit atherosclerotic formation through immune tolerance which is established by Tregs depending on the induction of anti-inflammatory cytokine TGF-β.Immune tolerance induced by nasal administration of HSP60 may provide an alternative therapeutic method for atherosclerosis.
基金Supported by Ningxia Key Research and Development Program,No.2023BEG02015Ningxia Science and Technology Benefiting People Program,No.2022CMG03064+1 种基金Ningxia Natural Science Foundation,No.2022AAC02039National Natural Science Foundation of China,No.82260879 and No.82374261.
文摘BACKGROUND Yigong San(YGS)is a representative prescription for the treatment of digestive disorders,which has been used in clinic for more than 1000 years.However,the mechanism of its anti-gastric cancer and regulate immunity are still remains unclear.AIM To explore the mechanism of YGS anti-gastric cancer and immune regulation.METHODS Firstly,collect the active ingredients and targets of YGS,and the differentially expressed genes of gastric cancer.Secondly,constructed a protein-protein interaction network between the targets of drugs and diseases,and screened hub genes.Then the clinical relevance,mutation and repair,tumor microenvironment and drug sensitivity of the hub gene were analyzed.Finally,molecular docking was used to verify the binding ability of YGS active ingredient and hub genes.RESULTS Firstly,obtained 55 common targets of gastric cancer and YGS.The Kyoto Encyclopedia of Genes and Genomes screened the microtubule-associated protein kinase signaling axis as the key pathway and IL6,EGFR,MMP2,MMP9 and TGFB1 as the hub genes.The 5 hub genes were involved in gastric carcinogenesis,staging,typing and prognosis,and their mutations promote gastric cancer progression.Finally,molecular docking results confirmed that the components of YGS can effectively bind to therapeutic targets.CONCLUSION YGS has the effect of anti-gastric cancer and immune regulation.
文摘Objective:To explore the pharmacological basis of the Compound Xintahua (XTH) action in Atherosclerosis (AS) therapy, a network interaction analysis was conducted at the molecular level. Methods:TCMSP database and literature mining were used to analyze the main effective components in XTH, and the targets were predicted by Swiss Target Prediction server according to AS mechanism. The potential targets were introduced into the FunRich database for target annotation and analysis, the path analysis was finally performed based on the FunRich databases. To determine the mechanism of action of XTH. Results:A total of 316 compounds, 117 targets, and 290 signaling pathways were identified. And 16 effective compounds, 39 common targets, and 43 pathways were associated with AS. Conclusions:The results showed that the flavonoids, phenols, organic acids and terpenoids of XTH could participate in the process of lipid metabolism, angiogenesis, oxidation, inflammation, endocrine metabolism, cell proliferation and apoptosis, It was further found that they could play the role of anti-Atherosclerosis through multi-component, multi-target, and multi-channel synergistically.
基金Supported by the National Natural Science Foundation of China,No.82100883the Research Project of Educational Commission of Jilin Province of China,No.JJKH20231214KJ.
文摘Diabetic kidney disease is one of the most severe chronic microvascular complications of diabetes and a primary cause of end-stage renal disease.Clinical studies have shown that renal inflammation is a key factor determining kidney damage during diabetes.With the development of immunological technology,many studies have shown that diabetic nephropathy is an immune complex disease,and that most patients have immune dysfunction.However,the immune response associated with diabetic nephropathy and autoimmune kidney disease,or caused by ischemia or infection with acute renal injury,is different,and has a complicated pathological mechanism.In this review,we discuss the pathogenesis of diabetic nephropathy in immune disorders and the intervention mechanism,to provide guidance and advice for early intervention and treatment of diabetic nephropathy.
文摘The important role of atherosclerosis in pathophysiology of Alzheimer's Disease has become evident.Mechanisms such as hyperlipidemia,inflammation,abdominal obesity and insulin resistance are important yet they may not fully explain the specific involvement of the Circle of Willis in these pathologies.The Circle of Wills is a complex geometrical structure which has several areas with different curvature as well as various branching angles of vessels composing the circle.The hemodynamics in this region should take into account the Dean number which indicates the influence of curvature on the resistance to blood flow.Thus,areas with various curvature and angles may have different hemodynamics and there are certain areas in the Circle of Willis that are more likely to develop atherosclerotic changes.Therefore,this could suggest the novel pathophysiological pathway resulting from the geometric peculiarities of the Circle of Willis.One of the directions of future research is to examine whether specific areas of the Circle of Willis are more likely to develop atherosclerotic changes compared to other ones.Selective areas of the Circle of Willis affected by atherosclerotic changes could indicate the primary role of atherosclerosis promoting Alzheimer's disease although other pathophysiological mechanisms suggesting the opposite direction should be also examined in prospective studies.
文摘Atherosclerosis is a chronic vascular disease and the most common pathological change of cardiovascular disease.Its pathogenesis is closely related to inflammation,oxidative stress,lipid accumulation,and calcinosis.Tetramethylpyrazine plays an anti-atherosclerotic role by regulating lipid metabolism,inhibiting foam cell formation,alleviating inflammation,inhibiting vascular calcification and abnormal platelet activation,and has a cardiovascular protective effect.Therefore,this paper summarized the research progress of the anti-atherosclerosis effect and mechanism of tetramethylpyrazine.
基金Supported by the National Science Foundation of China,No.81500593the Science and Technology Innovation Platform Project of Zhongnan Hospital of Wuhan University,No.PTXM2021016.
文摘Obesity and overweight are widespread issues in adults,children,and adolescents globally,and have caused a noticeable rise in obesity-related complications such as type 2 diabetes mellitus(T2DM).Chronic low-grade inflammation is an important promotor of the pathogenesis of obesity-related T2DM.This proinflammatory activation occurs in multiple organs and tissues.Immune cellmediated systemic attack is considered to contribute strongly to impaired insulin secretion,insulin resistance,and other metabolic disorders.This review focused on highlighting recent advances and underlying mechanisms of immune cell infiltration and inflammatory responses in the gut,islet,and insulin-targeting organs(adipose tissue,liver,skeletal muscle)in obesity-related T2DM.There is current evidence that both the innate and adaptive immune systems contribute to the development of obesity and T2DM.
文摘Hepatitis B virus(HBV)reactivation is a clinically significant challenge in disease management.This review explores the immunological mechanisms underlying HBV reactivation,emphasizing disease progression and management.It delves into host immune responses and reactivation’s delicate balance,spanning innate and adaptive immunity.Viral factors’disruption of this balance,as are interac-tions between viral antigens,immune cells,cytokine networks,and immune checkpoint pathways,are examined.Notably,the roles of T cells,natural killer cells,and antigen-presenting cells are discussed,highlighting their influence on disease progression.HBV reactivation’s impact on disease severity,hepatic flares,liver fibrosis progression,and hepatocellular carcinoma is detailed.Management strategies,including anti-viral and immunomodulatory approaches,are critically analyzed.The role of prophylactic anti-viral therapy during immunosuppressive treatments is explored alongside novel immunotherapeutic interventions to restore immune control and prevent reactivation.In conclusion,this compre-hensive review furnishes a holistic view of the immunological mechanisms that propel HBV reactivation.With a dedicated focus on understanding its implic-ations for disease progression and the prospects of efficient management stra-tegies,this article contributes significantly to the knowledge base.The more profound insights into the intricate interactions between viral elements and the immune system will inform evidence-based approaches,ultimately enhancing disease management and elevating patient outcomes.The dynamic landscape of management strategies is critically scrutinized,spanning anti-viral and immunomodulatory approaches.The role of prophylactic anti-viral therapy in preventing reactivation during immunosuppressive treatments and the potential of innovative immunotherapeutic interventions to restore immune control and proactively deter reactivation.
文摘Ovarian cancer is one of the three major malignant tumors in gynecology, with increasing incidence and mortality rates. Currently, the main treatment methods remain surgical intervention in combination with chemotherapy. However, due to its high recurrence rate and the risk of drug resistance, the overall prognosis is poor. Ovarian cancer has been identified as an immunegenic tumor, and in recent years, with the continued advancement of research into immune evasion mechanisms, immunotherapy has emerged as a groundbreaking treatment modality. This article will focus on the immune escape mechanisms and their application in ovarian cancer, providing a comprehensive overview of its current status and the challenges it faces.
基金Tianjin Administration of Traditional Chinese Medicine Research Project of Integrated Traditional Chinese and Western Medicine(No.2021147).
文摘Acne is a chronic inflammatory skin disease involving hair follicle sebaceous glands,which is characterized by acne,papules,pustules,nodules,cysts and so on.The disorder of immune inflammation is the key link.A variety of factors participate in the immune inflammatory response of acne and interact with each other,leading to the occurrence and development of acne inflammation.Acupuncture can regulate the immune and inflammatory response through many links and improve the skin lesions.This study explains potential mechanisms of acupuncture in the treatment of acne by regulating the body's immune inflammatory response,in order to provide new ideas.
基金the National Key Research and Development Program of the Ministry of Science and Technology(CN)(No.2022YFD2400401)the Key Research and Development Plan of Shandong Province(CN)(for Academician Team in Shandong)(No.2023ZLYS02)+1 种基金the Fundamental Research Funds for the Central Universities(No.202261029)the Enterprise Authorized Project(No.20200025)。
文摘Turbot Scophthalmus maximus is an important mariculture fish species with high economic value.However,the bacterial diseases caused by Vibrio anguillarum infection bring huge economic losses to the turbot aquaculture industry.To understand the immune response of the turbot against V.anguillarum infection and to explore novel immune-related genes,the transcriptome analysis of turbot spleen and gills were conducted after V.anguillarum infection.Differentially expressed genes(DEGs)were identified in spleen and gill of the turbot amounted to 17261 and 16436,respectively.A large number of immunerelated DEGs were enriched in cytokine-cytokine receptor interaction signaling pathway,and the others by the kyoto encyclopedia of genes and genomes(KEGG)enrichment.The gene ontology(GO)classification analysis revealed that V.anguillarum infection had the greatest effect on biological processes and cellular components.Twelve immune-related DEGs were identified in the spleen(cstl.1,egfl6,lamb21,v2rx4,calcr,and gpr78a)and gills(ghra,sh3gl2a,cst12,inhbaa,cxcl8,and il-1b)by heat map.The proteinprotein interaction(PPI)networks were constructed to analyze the immune mechanism.The results demonstrate that the maturation and antigen processing of major histocompatibility complex(MHC)class II molecule,and calcitonin-or adrenomedullin-regulated physiological activity were important events in the immunity of turbot against V.anguillarum infection.In the gills,the protein interactions in TGF-βsignaling pathway,production of inflammatory factors,and endocytosis regulation were most significant.Our research laid a foundation for discovering novel immune-related genes and enriching the knowledge of immune mechanisms of turbot against V.anguillarum infection.
基金supported by the National Natural Science Foundation of China,Nos.82104560(to CL),U21A20400(to QW)the Natural Science Foundation of Beijing,No.7232279(to XW)the Project of Beijing University of Chinese Medicine,No.2022-JYB-JBZR-004(to XW)。
文摘The primary mechanism of secondary injury after cerebral ischemia may be the brain inflammation that emerges after an ischemic stroke,which promotes neuronal death and inhibits nerve tissue regeneration.As the first immune cells to be activated after an ischemic stroke,microglia play an important immunomodulatory role in the progression of the condition.After an ischemic stroke,peripheral blood immune cells(mainly T cells)are recruited to the central nervous system by chemokines secreted by immune cells in the brain,where they interact with central nervous system cells(mainly microglia)to trigger a secondary neuroimmune response.This review summarizes the interactions between T cells and microglia in the immune-inflammatory processes of ischemic stroke.We found that,during ischemic stroke,T cells and microglia demonstrate a more pronounced synergistic effect.Th1,Th17,and M1 microglia can co-secrete proinflammatory factors,such as interferon-γ,tumor necrosis factor-α,and interleukin-1β,to promote neuroinflammation and exacerbate brain injury.Th2,Treg,and M2 microglia jointly secrete anti-inflammatory factors,such as interleukin-4,interleukin-10,and transforming growth factor-β,to inhibit the progression of neuroinflammation,as well as growth factors such as brain-derived neurotrophic factor to promote nerve regeneration and repair brain injury.Immune interactions between microglia and T cells influence the direction of the subsequent neuroinflammation,which in turn determines the prognosis of ischemic stroke patients.Clinical trials have been conducted on the ways to modulate the interactions between T cells and microglia toward anti-inflammatory communication using the immunosuppressant fingolimod or overdosing with Treg cells to promote neural tissue repair and reduce the damage caused by ischemic stroke.However,such studies have been relatively infrequent,and clinical experience is still insufficient.In summary,in ischemic stroke,T cell subsets and activated microglia act synergistically to regulate inflammatory progression,mainly by secreting inflammatory factors.In the future,a key research direction for ischemic stroke treatment could be rooted in the enhancement of anti-inflammatory factor secretion by promoting the generation of Th2 and Treg cells,along with the activation of M2-type microglia.These approaches may alleviate neuroinflammation and facilitate the repair of neural tissues.
基金supported by the Excellent Innovative Talent Support Program of Heilongjiang University of Chinese Medicine(No.2012RCD05)
文摘Atherosclerosis(AS) is a chronic inflammatory disease associated with high morbidity and mortality. The incidence of AS is increasing in the last decades. So development of safe and effective therapeutics for treating AS has become prominently important. Although there are numerous chemical drugs available for treating AS, some drugs are not effective and some have serious side effects. Traditional Chinese medicine(TCM) has a long history for the prevention and treatment of AS due to its less side effects and superior efficacy. This paper describes the effectiveness and underlying mechanisms for prevention and treatment of AS by TCM or its active components. Some TCM, e.g. XuemaiNing, Tongxinluo and Salvia miltiorrhiza have been reported to have cardio-protective effect. Some active components of TCM, e.g. saikosaponin-A, kuwanon G, luteolin and β-elemene have been isolated from various TCM and demonstrated to have beneficial effects on prevention and treatment of AS.