The catalytic activity and durability of Rh/ZrO2 catalyst were investigated compared with Rh/Al2O3 catalyst under diverse aging atmospheres, including lean, rich and lean–rich cyclic aging atmospheres, to simulate th...The catalytic activity and durability of Rh/ZrO2 catalyst were investigated compared with Rh/Al2O3 catalyst under diverse aging atmospheres, including lean, rich and lean–rich cyclic aging atmospheres, to simulate the real working conditions of three-way catalyst.Oxidation states and microstructures of rhodium species were investigated to correlate with the catalytic performance of the catalysts. The catalytic performance and durability of the Rh catalyst under diverse aging atmospheres were drastically enhanced by ZrO2 support. ZrO2 support was confirmed to be able to effectively inhibit rhodium sintering even under diverse aging conditions. It can also successfully keep Rh species in an active low-valence state on the surface of the catalyst. The superiority of ZrO2 support compared to Al2O3 was verified by the Rh-based monolith catalyst.展开更多
基金supported by the National Natural Science Foundation of China(No.51202116)the Ministry of Science and Technology of China(No.2015AA034603)
文摘The catalytic activity and durability of Rh/ZrO2 catalyst were investigated compared with Rh/Al2O3 catalyst under diverse aging atmospheres, including lean, rich and lean–rich cyclic aging atmospheres, to simulate the real working conditions of three-way catalyst.Oxidation states and microstructures of rhodium species were investigated to correlate with the catalytic performance of the catalysts. The catalytic performance and durability of the Rh catalyst under diverse aging atmospheres were drastically enhanced by ZrO2 support. ZrO2 support was confirmed to be able to effectively inhibit rhodium sintering even under diverse aging conditions. It can also successfully keep Rh species in an active low-valence state on the surface of the catalyst. The superiority of ZrO2 support compared to Al2O3 was verified by the Rh-based monolith catalyst.