The visible-light imaging system used in military equipment is often subjected to severe weather conditions, such as fog, haze, and smoke, under complex lighting conditions at night that significantly degrade the acqu...The visible-light imaging system used in military equipment is often subjected to severe weather conditions, such as fog, haze, and smoke, under complex lighting conditions at night that significantly degrade the acquired images. Currently available image defogging methods are mostly suitable for environments with natural light in the daytime, but the clarity of images captured under complex lighting conditions and spatial changes in the presence of fog at night is not satisfactory. This study proposes an algorithm to remove night fog from single images based on an analysis of the statistical characteristics of images in scenes involving night fog. Color channel transfer is designed to compensate for the high attenuation channel of foggy images acquired at night. The distribution of transmittance is estimated by the deep convolutional network DehazeNet, and the spatial variation of atmospheric light is estimated in a point-by-point manner according to the maximum reflection prior to recover the clear image. The results of experiments show that the proposed method can compensate for the high attenuation channel of foggy images at night, remove the effect of glow from a multi-color and non-uniform ambient source of light, and improve the adaptability and visual effect of the removal of night fog from images compared with the conventional method.展开更多
Outdoor haze has adverse impact on outdoor image quality,including contrast loss and poor visibility.In this paper,a novel dehazing algorithm based on the decomposition strategy is proposed.It combines the advantages ...Outdoor haze has adverse impact on outdoor image quality,including contrast loss and poor visibility.In this paper,a novel dehazing algorithm based on the decomposition strategy is proposed.It combines the advantages of the two-dimensional variational mode decomposition(2DVMD)algorithm and dark channel prior.The original hazy image is adaptively decom-posed into low-frequency and high-frequency images according to the image frequency band by using the 2DVMD algorithm.The low-frequency image is dehazed by using the improved dark channel prior,and then fused with the high-frequency image.Furthermore,we optimize the atmospheric light and transmit-tance estimation method to obtain a defogging effect with richer details and stronger contrast.The proposed algorithm is com-pared with the existing advanced algorithms.Experiment results show that the proposed algorithm has better performance in comparison with the state-of-the-art algorithms.展开更多
基金supported by a grant from the Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology (Grant No. GZZKFJJ2020004)the National Natural Science Foundation of China (Grant Nos. 61875013 and 61827814)the Natural Science Foundation of Beijing Municipality (Grant No. Z190018)。
文摘The visible-light imaging system used in military equipment is often subjected to severe weather conditions, such as fog, haze, and smoke, under complex lighting conditions at night that significantly degrade the acquired images. Currently available image defogging methods are mostly suitable for environments with natural light in the daytime, but the clarity of images captured under complex lighting conditions and spatial changes in the presence of fog at night is not satisfactory. This study proposes an algorithm to remove night fog from single images based on an analysis of the statistical characteristics of images in scenes involving night fog. Color channel transfer is designed to compensate for the high attenuation channel of foggy images acquired at night. The distribution of transmittance is estimated by the deep convolutional network DehazeNet, and the spatial variation of atmospheric light is estimated in a point-by-point manner according to the maximum reflection prior to recover the clear image. The results of experiments show that the proposed method can compensate for the high attenuation channel of foggy images at night, remove the effect of glow from a multi-color and non-uniform ambient source of light, and improve the adaptability and visual effect of the removal of night fog from images compared with the conventional method.
基金supported by the National Defense Technology Advance Research Project of China(004040204).
文摘Outdoor haze has adverse impact on outdoor image quality,including contrast loss and poor visibility.In this paper,a novel dehazing algorithm based on the decomposition strategy is proposed.It combines the advantages of the two-dimensional variational mode decomposition(2DVMD)algorithm and dark channel prior.The original hazy image is adaptively decom-posed into low-frequency and high-frequency images according to the image frequency band by using the 2DVMD algorithm.The low-frequency image is dehazed by using the improved dark channel prior,and then fused with the high-frequency image.Furthermore,we optimize the atmospheric light and transmit-tance estimation method to obtain a defogging effect with richer details and stronger contrast.The proposed algorithm is com-pared with the existing advanced algorithms.Experiment results show that the proposed algorithm has better performance in comparison with the state-of-the-art algorithms.