期刊文献+
共找到74篇文章
< 1 2 4 >
每页显示 20 50 100
The Application of Flux-Form Semi-Lagrangian Transport Scheme in a Spectral Atmosphere Model 被引量:4
1
作者 王晓聪 刘屹岷 +2 位作者 吴国雄 Shian-Jiann LIN 包庆 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2013年第1期89-100,共12页
A flux-form semi-Lagrangian transport scheme (FFSL) was implemented in a spectral atmospheric GCM developed and used at IAP/LASG. Idealized numerical experiments show that the scheme is good at shape preserving with... A flux-form semi-Lagrangian transport scheme (FFSL) was implemented in a spectral atmospheric GCM developed and used at IAP/LASG. Idealized numerical experiments show that the scheme is good at shape preserving with less dissipation and dispersion, in comparison with other conventional schemes, hnportantly, FFSL can automatically maintain the positive definition of the transported tracers, which was an underlying problem in the previous spectral composite method (SCM). To comprehensively investigate the impact of FFSL on GCM results, we conducted sensitive experiments. Three main improvements resulted: first, rainfall simulation in both distribution and intensity was notably improved, which led to an improvement in precipitation frequency. Second, the dry bias in the lower troposphere was significantly reduced compared with SCM simulations. Third, according to the Taylor diagram, the FFSL scheme yields simulations that are superior to those using the SCM: a higher correlation between model output and observation data was achieved with the FFSL scheme, especially for humidity in lower troposphere. However, the moist bias in the middle and upper troposphere was more pronounced with the FFSL scheme. This bias led to an over-simulation of precipitable water in comparison with reanalysis data. Possible explanations, as well as solutions, are discussed herein. 展开更多
关键词 advection precipitation spectral composite method flux-form semi-Lagrangian Spectral Atmospheric model of the IAP/LASG (SAMIL)
下载PDF
Improved Diurnal Cycle of Precipitation on Land in a Global Non-Hydrostatic Model Using a Revised NSAS Deep Convective Scheme
2
作者 Yifan ZHAO Xindong PENG +1 位作者 Xiaohan LI Siyuan CHEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第6期1217-1234,共18页
In relatively coarse-resolution atmospheric models,cumulus parameterization helps account for the effect of subgridscale convection,which produces supplemental rainfall to the grid-scale precipitation and impacts the ... In relatively coarse-resolution atmospheric models,cumulus parameterization helps account for the effect of subgridscale convection,which produces supplemental rainfall to the grid-scale precipitation and impacts the diurnal cycle of precipitation.In this study,the diurnal cycle of precipitation was studied using the new simplified Arakawa-Schubert scheme in a global non-hydrostatic atmospheric model,i.e.,the Yin-Yang-grid Unified Model for the Atmosphere.Two new diagnostic closures and a convective trigger function were suggested to emphasize the job of the cloud work function corresponding to the free tropospheric large-scale forcing.Numerical results of the 0.25-degree model in 3-month batched real-case simulations revealed an improvement in the diurnal precipitation variation by using a revised trigger function with an enhanced dynamical constraint on the convective initiation and a suitable threshold of the trigger.By reducing the occurrence of convection during peak solar radiation hours,the revised scheme was shown to be effective in delaying the appearance of early-afternoon rainfall peaks over most land areas and accentuating the nocturnal peaks that were wrongly concealed by the more substantial afternoon peak.In addition,the revised scheme enhanced the simulation capability of the precipitation probability density function,such as increasing the extremely low-and high-intensity precipitation events and decreasing small and moderate rainfall events,which contributed to the reduction of precipitation bias over mid-latitude and tropical land areas. 展开更多
关键词 cumulus parameterization diurnal cycle of precipitation large-scale dynamic forcing global non-hydrostatic atmospheric model performance verification
下载PDF
THE IMPACT OF A DIAGNOSTIC CLOUD SCHEME ON FORECASTS WITH A GLOBAL ATMOSPHERE MODEL
3
作者 郑庆林 《Acta meteorologica Sinica》 SCIE 1990年第1期38-50,共13页
Experiments were conducted to test the impact of a cloud diagnosis scheme in place of prescribed zonal average cloud on medium and long range integrations with the Australian Bureau of Meteorology Research Centre(BMRC... Experiments were conducted to test the impact of a cloud diagnosis scheme in place of prescribed zonal average cloud on medium and long range integrations with the Australian Bureau of Meteorology Research Centre(BMRC)global atmosphere model.The cloud scheme was shown to improve the temperature bias in the lower troposphere but there was deterioration in the upper troposphere,especially in the tropics,asso- ciated with underestimation of high cloud amount. Thirty day mean fields in a January integration showed greater amplitude in the Northern Hemisphere planetary waves and a deeper Antarctic circumpolar trough than the control experiment or a simulation with no cloud.The results for the diagnosed cloud case agree more closely with corresponding observed fields. There was also some reduction in the zonal average zonal wind component reflecting the additional zonal asymmetry introduced by the diagnostic cloud scheme.Similar trends were also noted in medium and long range forecasts for January and July conditions,although the impact on predictive skill was slight and in some cases detrimental. Areas for improving the diagnostic cloud scheme are noted. 展开更多
关键词 THE IMPACT OF A DIAGNOSTIC CLOUD SCHEME ON FORECASTS WITH A GLOBAL atmosphere model
原文传递
Decoy State Quantum Key Distribution via Beam-Wandering Modeled Atmosphere Channel 被引量:1
4
作者 张胜利 金晨辉 +3 位作者 郭建胜 史建红 邹旭波 郭光灿 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第12期9-13,共5页
We investigate the decoy state quantum key distribution via the atmosphere channels. We consider the efficient decoy state method with one-signal state and two-decoy states. Our results show that the decoy state metho... We investigate the decoy state quantum key distribution via the atmosphere channels. We consider the efficient decoy state method with one-signal state and two-decoy states. Our results show that the decoy state method works even in the channels with fluctuating transmittance. Nevertheless, the key generation rate will be dra-matically decreased by atmosphere turbulence, which sheds more light on the characterization of atmosphere turbulence in realistic free-space based quantum key distributions. 展开更多
关键词 of on in Decoy State Quantum Key Distribution via Beam-Wandering modeled atmosphere Channel that is
下载PDF
A Coupled General Circulation Model for the Tropical Pacific Ocean and Global Atmosphere 被引量:4
5
作者 张荣华 曾庆存 +1 位作者 周广庆 梁信忠 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1995年第2期127-142,共16页
On the basis of Zeng's theorehcal design, a coupled general circulation model(CGCM) is develO ̄ with itscharacteristics different from other CGCMs such as the unified vertical coordinates and subtraction of the st... On the basis of Zeng's theorehcal design, a coupled general circulation model(CGCM) is develO ̄ with itscharacteristics different from other CGCMs such as the unified vertical coordinates and subtraction of the standard stratification for both atmosphere and ocean, available energy consideration,and so on.The oceanic comPOnent is a free surface tropical Pacific Ocean GCM betWeen 30W and 30'S with horizontal grid spacing of ic in latitude and 2°in longitude,and with 14 vertical layers.The atmospheric component is a global GCM with low-resolution of 4°in lahtude and 5°in longitude,and tWo layers of equal mass in the verhcal between the surfaCe and 200 hFa.The atmospheric GCM includes comprehensive physical processes.The coupled model is subjected to seasonally-varying cycle.Several coupling experiments,ranging from straight forward coupling without flux correction to one with flux correchon,and to so-called predictor-corrector monthly coupling(PCMC),are conducted tO show the esistence and final controlling of the climate drift in the coupled system.After removing the climate drift with the PCMC SCheme,the coupled model is integrated for more than twenty years.The results show reasonable simulations of the anneal mean and its seasollal cycle of the atmospheric and ̄ante circulahon.The model also ProduCeS the coherent intermnual variations of the climate system, manifesting the observed EI Nifio/Southern OSCillation(ENSO). 展开更多
关键词 Tropical Pacific Ocean Global atmosphere Coupled general circulahon model Predictor Monthly coupling
下载PDF
INTERDECADAL VARIABILITY IN A MODEL ATMOSPHERE
6
作者 李发明 吴爱明 《Journal of Tropical Meteorology》 SCIE 2001年第1期93-101,共9页
By using the simulation results of an AGCM, which had been run from 1945 to 1993 forced by COADS SST, the interdecadal variability of the model atmosphere was investigated and compared with that of NCEP reanalysis dat... By using the simulation results of an AGCM, which had been run from 1945 to 1993 forced by COADS SST, the interdecadal variability of the model atmosphere was investigated and compared with that of NCEP reanalysis data. It was found that, interdecadal variability exists significantly in both the tropical Pacific wind fields and the mid-high latitude atmospheric circulation of the model atmosphere. The tendency of time variation and spatial distributions of the interdecadal variability of the model atmosphere are basically consistent with observation. Relative to the mid-high latitude atmospheric circulation, the simulation of tropical Pacific wind is more satisfying, which suggests that anomalous variation of SST is still the main factor for the interdecadal variability of tropical Pacific wind. It might have more significant influence on the tropical wind than on the mid-high latitude atmosphere. However, there is still obvious difference between the simulation and observation. They could be attributed to both the simulation capability of the model and absence of other factors in the model which are important for the interdecadal climate variation. 展开更多
关键词 model atmosphere SST anomalies interdecadal variability mid-high latitude atmospheric circulation
下载PDF
Continuous Variable Quantum Teleportation in Beam-Wandering Modeled Atmosphere Channel
7
作者 张胜利 金晨辉 +3 位作者 史建红 郭建胜 邹旭波 郭光灿 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第4期5-8,共4页
We investigate the continuous variable quomtum teleportation in atmosphere channels. The beam-wandering mode/is employed to analyze the teleportation of the unknown single-mode coherent state. Two methods, one is dete... We investigate the continuous variable quomtum teleportation in atmosphere channels. The beam-wandering mode/is employed to analyze the teleportation of the unknown single-mode coherent state. Two methods, one is deterministic by increasing the aperture size of the detecting device and one is probabilistic by entanglement distillation, are proposed to improve the teleportation fidelity in the presence of atmosphere noises. 展开更多
关键词 Continuous Variable Quantum Teleportation in Beam-Wandering modeled atmosphere Channel
下载PDF
A Neural-network-based Alternative Scheme to Include Nonhydrostatic Processes in an Atmospheric Dynamical Core
8
作者 Yang XIA Bin WANG +13 位作者 Lijuan LI Li LIU Jianghao LI Li DONG Shiming XU Yiyuan LI Wenwen XIA Wenyu HUANG Juanjuan LIU Yong WANG Hongbo LIU Ye PU Yujun HE Kun XIA 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第6期1083-1099,I0002,I0003,共19页
Here,a nonhydrostatic alternative scheme(NAS)is proposed for the grey zone where the nonhydrostatic impact on the atmosphere is evident but not large enough to justify the necessity to include an implicit nonhydrostat... Here,a nonhydrostatic alternative scheme(NAS)is proposed for the grey zone where the nonhydrostatic impact on the atmosphere is evident but not large enough to justify the necessity to include an implicit nonhydrostatic solver in an atmospheric dynamical core.The NAS is designed to replace this solver,which can be incorporated into any hydrostatic models so that existing well-developed hydrostatic models can effectively serve for a longer time.Recent advances in machine learning(ML)provide a potential tool for capturing the main complicated nonlinear-nonhydrostatic relationship.In this study,an ML approach called a neural network(NN)was adopted to select leading input features and develop the NAS.The NNs were trained and evaluated with 12-day simulation results of dry baroclinic-wave tests by the Weather Research and Forecasting(WRF)model.The forward time difference of the nonhydrostatic tendency was used as the target variable,and the five selected features were the nonhydrostatic tendency at the last time step,and four hydrostatic variables at the current step including geopotential height,pressure in two different forms,and potential temperature,respectively.Finally,a practical NAS was developed with these features and trained layer by layer at a 20-km horizontal resolution,which can accurately reproduce the temporal variation and vertical distribution of the nonhydrostatic tendency.Corrected by the NN-based NAS,the improved hydrostatic solver at different horizontal resolutions can run stably for at least one month and effectively reduce most of the nonhydrostatic errors in terms of system bias,anomaly root-mean-square error,and the error of the wave spatial pattern,which proves the feasibility and superiority of this scheme. 展开更多
关键词 neural network nonhydrostatic alternative scheme atmospheric model dynamical core
下载PDF
The Performance of Atmospheric Component Model R42L9 of GOALS/LASG 被引量:31
9
作者 吴统文 刘平 +3 位作者 王在志 刘屹岷 宇如聪 吴国雄 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2003年第5期726-742,共17页
This paper examines the performance of an atmospheric general circulation model (AGCM) developed at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of ... This paper examines the performance of an atmospheric general circulation model (AGCM) developed at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics (LASG/IAP). It is a spectral model truncated at R42(2.8125°long×1.66°lat) resolution and with nine vertical levels, and referred to as R42L9/LASG hereafter. It is also the new version of atmospheric component model R15L9 of the global ocean-atmosphere-land system (GOALS/LASG). A 40-year simulation in which the model is forced with the climatological monthly mean sea surface temperature is compared with the 40-year (1958-97) U.S. National Center for Environmental Prediction (NGEP) global reanalysis and the 22-year (1979-2000) Xie-Arkin monthly precipitation climatology. The mean DJF and JJA geographical distributions of precipitation, sea level pressure, 500-hPa geopotential height, 850-hPa and 200-hPa zonal wind, and other fields averaged for the last 30-year integration of the R42L9 model are analyzed. Results show that the model reproduces well the observed basic patterns, particularly precipitation over the East Asian region. Comparing the new model with R15L9/LASG, the old version with coarse resolution (nearly 7.5°long×4.5°lat), shows an obvious improvement in the simulation of regional climate, especially precipitation. The weaknesses in simulation and future improvements of the model are also discussed. 展开更多
关键词 Global ocean-atmosphere-land system (GOALS) model development general atmospheric model (R42L9) model performance
下载PDF
Dynamical Framework of IAP Nine-Level Atmospheric General Circulation Model 被引量:48
10
作者 张学洪 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1990年第1期67-77,共11页
The dynamical framework of the nine-level version of the IAP AGCM is presented in this paper. The emphasis of the model's description is put on the following two aspects:(1) A model's standard atmosphere, whic... The dynamical framework of the nine-level version of the IAP AGCM is presented in this paper. The emphasis of the model's description is put on the following two aspects:(1) A model's standard atmosphere, which is a satisfactory approximation to the observed troposphere and lower stratosphere standard atmosphere, is introduced into the equations of the model to permit a more accurate calculation of the vertical transport terms, especially near the tropopause; (2) The vertical levels of the model are carefully selected to guarantee a smooth dependence of layer thickness upon pressure in order to reduce the truncation error involved in the unequal interval vertical finite-differencing. For testing the model, two kinds of linear baroclinic Rossby-Haurwitz waves, one of which has a dynamically stable vertical structure and the other has a relatively unstable one, are constructed to provide initial conditions for numerical experiments. The two waves have been integrated for more than 300 days and 100 days respectively by using the model and both of them are propagating westward with almost identical phase-speed during the time period of the integrations. No obvious change of the wave patterns is found at the levels in the model's troposphere. The amplitudes of both two waves at the uppermost level, however, exhibit rather significant oscillation with time, of which the periods are exactly 20 days and 25 days espectively.The explanation of this interesting phenomena is still under investigation. 展开更多
关键词 Dynamical Framework of IAP Nine-Level Atmospheric General Circulation model RH IAP
下载PDF
Prediction of the Asian-Australian Monsoon Interannual Variations with the Grid-Point Atmospheric Model of IAP LASG(GAMIL) 被引量:9
11
作者 吴志伟 李建平 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2008年第3期387-394,共8页
Seasonal prediction of Asian-Australian monsoon (A-AM) precipitation is one of the most important and challenging tasks in climate prediction. In this paper, we evaluate the performance of Grid Atmospheric Model of ... Seasonal prediction of Asian-Australian monsoon (A-AM) precipitation is one of the most important and challenging tasks in climate prediction. In this paper, we evaluate the performance of Grid Atmospheric Model of IAP LASG (GAMIL) on retrospective prediction of the A-AM interannual variation (IAV), and determine to what extent GAMIL can capture the two major observed modes of A-AM rainfall IAV for the period 1979-2003. The first mode is associated with the turnabout of warming (cooling) in the Nifio 3.4 region, whereas the second mode leads the warming/cooling by about one year, signaling precursory conditions for ENSO. We show that the GAMIL one-month lead prediction of the seasonal precipitation anomalies is primarily able to capture major features of the two observed leading modes of the IAV, with the first mode better predicted than the second. It also depicts the relationship between the first mode and ENSO rather well. On the other hand, the GAMIL has deficiencies in capturing the relationship between the second mode and ENSO. We conclude: (1) successful reproduction of the E1 Nifio-excited monsoon-ocean interaction and E1 Nifio forcing may be critical for the seasonal prediction of the A-AM rainfall IAV with the GAMIL; (2) more efforts are needed to improve the simulation not only in the Nifio 3.4 region but also in the joining area of Asia and the Indian-Pacific Ocean; (3) the selection of a one-tier system may improve the ultimate prediction of the A-AM rainfall IAV. These results offer some references for improvement of the GAMIL and associated seasonal prediction skill. 展开更多
关键词 Asian-Australian monsoon interannual variation ENSO atmospheric general circulation model GAMIL
下载PDF
An Introduction to the Coupled Model FGOALS1.1-s and Its Performance in East Asia 被引量:12
12
作者 包庆 吴国雄 +3 位作者 刘屹岷 杨静 王在志 周天军 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2010年第5期1131-1142,共12页
The spectral version 1.1 of the Flexible Global Ocean–atmosphere–land System (FGOALS1.1-s) model was developed in the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophys- ical Fluid Dyn... The spectral version 1.1 of the Flexible Global Ocean–atmosphere–land System (FGOALS1.1-s) model was developed in the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophys- ical Fluid Dynamics at the Institute of Atmospheric Physics (LASG/IAP). This paper reports the major modifications to the physical parameterization package in its atmospheric component, including the radiation scheme, convection scheme, and cloud scheme. Furthermore, the simulation of the East Asian Summer Monsoon (EASM) by FGOALS1.1-s is examined, both in terms of climatological mean state and interannual variability. The results indicate that FGOALS1.1-s exhibits significant improvements in the simulation of the balance of energy at the top of the atmosphere: the net radiative energy flux at the top was 0.003 W m-2 in the 40 years fully coupled integration. The distribution of simulated sea surface temperature was also quite reasonable, without obvious climate drift. FGOALS1.1-s is also capable of capturing the major features of the climatological mean state of the EASM: major rainfall maximum centers, the annual cycle of precipitation, and the lower-level monsoon circulation flow were highly consistent with observations in the EASM region. Regarding interannual variability, simulation of the EASM leading patterns and their relationship with sea surface temperature was examined. The results show that FGOALS1.1-s can reproduce the first leading pattern of the EASM and its close relationship with the decaying phase of the ENSO. However, the model lacked the ability to capture either the second major mode of the EASM or its relationship with the developing phase of the ENSO. 展开更多
关键词 East Asian Summer Monsoon ocean–atmosphere–land model climatological mean state in-terannual variability ENSO
下载PDF
A Study on Sulfate Optical Properties and Direct Radiative Forcing Using LASG-IAP General Circulation Model 被引量:7
13
作者 李剑东 孙治安 +3 位作者 刘屹岷 李江南 王维强 吴国雄 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2012年第6期1185-1199,共15页
The direct radiative forcing (DRF) of sulfate aerosols depends highly on the atmospheric sulfate loading and the meteorology, both of which undergo strong regional and seasonal variations. Because the optical proper... The direct radiative forcing (DRF) of sulfate aerosols depends highly on the atmospheric sulfate loading and the meteorology, both of which undergo strong regional and seasonal variations. Because the optical properties of sulfate aerosols are also sensitive to atmospheric relative humidity, in this study we first examine the scheme for optical properties that considers hydroscopic growth. Next, we investigate the seasonal and regional distributions of sulfate DRF using the sulfate loading simulated from NCAR CAM-Chem together with the meteorology modeled from a spectral atmospheric general circulation model (AGCM) developed by LASG-IAP. The global annual-mean sulfate loading of 3.44 mg m-2 is calculated to yield the DRF of -1.03 and -0.57 W m-2 for clear-sky and all-sky conditions, respectively. However, much larger values occur on regional bases. For example, the maximum all-sky sulfate DRF over Europe, East Asia, and North America can be up to -4.0 W m-2. The strongest all-sky sulfate DRF occurs in the Northern Hemispheric July, with a hemispheric average of -1.26 W m-2. The study results also indicate that the regional DRF are strongly affected by cloud and relative humidity, which vary considerably among the regions during different seasons. This certainly raises the issue that the biases in model-sinmlated regional meteorology can introduce biases into the sulfate DRF. Hence, the model processes associated with atmospheric humidity and cloud physics should be modified in great depth to improve the simulations of the LASG-IAP AGCM and to reduce the uncertainty of sulfate direct effects on global and regional climate in these simulations. 展开更多
关键词 SULFATE optical properties direct radiative forcing atmospheric general circulation model
下载PDF
Analysis and Evaluation of the Global Aerosol Optical Properties Simulated by an Online Aerosol-coupled Non-hydrostatic Icosahedral Atmospheric Model 被引量:3
14
作者 DAI Tie SHI Guangyu Teruyuki NAKAJIMA 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第6期743-758,共16页
Aerosol optical properties are simulated using the Spectral Radiation Transport Model I~)r Aerosol Species (SPRINTARS) coupled with the Non-hydrostatic ICosahedral Atmospheric Model (NICAM). The 3-year global mea... Aerosol optical properties are simulated using the Spectral Radiation Transport Model I~)r Aerosol Species (SPRINTARS) coupled with the Non-hydrostatic ICosahedral Atmospheric Model (NICAM). The 3-year global mean all-sky aerosol optical thickness (AOT) at 550 nm, theAngstr/Sm Exponent (AE) based on AOTs at 440 and 870 nm, and the single scattering albedo (SSA) at 550 nm are estimated at 0.123, 0.657 and 0.944, respectively. For each aerosol species, the mean AOT is within the range of the AeroCom models. Both the modeled all-sky and clear-sky results are compared with observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Aerosol Robotic Network (AERONET). The simulated spatiotemporal distributions of all-sky AOTs can generally reproduce the MODIS retrievals, and the correlation and model skill can be slightly improved using the clear-sky results over most land regions. The differences between clear-sky and all-sky AOTs are larger over polluted regions. Compared with observations from AERONET, the modeled and observed all-sky AOTs and AEs are generally in reasonable agreement, whereas the SSA variation is not well captured. Although the spatiotemporal distributions of all-sky and clear-sky results are similar, the clear-sky results are generally better correlated with the observations. The clear-sky AOT and SSA are generally lower than the all-sky results, especially in those regions where the aerosol chemical composition is contributed to mostly by sulfate aerosol. The modeled clear-sky AE is larger than the all-sky AE over those regions dominated by hydrophilic aerosol, while the'opposite is found over regions dominated by hydrophobic aerosol. 展开更多
关键词 aerosol optical properties non-hydrostatic icosahedral atmospheric model Moderate Resolution Imaging Spec-troradiometer Aerosol Robotic Network
下载PDF
Boreal Winter Rainfall Anomaly over the Tropical Indo-Pacific and Its Effect on Northern Hemisphere Atmospheric Circulation in CMIP5 Models 被引量:2
15
作者 WANG Hai LIU Qinyu 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2014年第4期916-925,共10页
Experimental outputs of 11 Atmospheric Model Intercomparison Project (AMIP) models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are analyzed to assess the atmospheric circulation anomaly over ... Experimental outputs of 11 Atmospheric Model Intercomparison Project (AMIP) models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are analyzed to assess the atmospheric circulation anomaly over Northern Hemisphere induced by the anomalous rainfall over tropical Pacific and Indian Ocean during boreal winter.The analysis shows that the main features of the interannual variation of tropical rainfall anomalies,especially over the Central Pacific (CP) (5°S-5°N,175°E-135°W) and Indo-western Pacific (IWP) (20°S-20°N,110°-150°E) are well captured in all the CMIP5/AMIP models.For the IWP and western Indian Ocean (WIO) (10°S-10°N,45°-75°E),the anomalous rainfall is weaker in the 11 CMIP5/AMIP models than in the observation.During El Ni(n)o/La Ni(n)a mature phases in boreal winter,consistent with observations,there are geopotential height anomalies known as the Pacific North American (PNA) pattern and Indo-western Pacific and East Asia (IWPEA) pattern in the upper troposphere,and the northwestern Pacific anticyclone (cyclone) (NWPA) in the lower troposphere in the models.Comparison between the models and observations shows that the ability to simulate the PNA and NWPA pattern depends on the ability to simulate the anomalous rainfall over the CP,while the ability to simulate the IWPEA pattern is related to the ability to simulate the rainfall anomaly in the IWP and WIO,as the SST anomaly is same in AMIP experiments.It is found that the tropical rainfall anomaly is important in modeling the impact of the tropical Indo-Pacific Ocean on the extratropical atmospheric circulation anomaly. 展开更多
关键词 Atmospheric model Intercomparison Project tropical Indo-Pacific rainfall Northern Hemisphere atmospheric circulation anomaly boreal winter teleconnection pattern
下载PDF
The Seasonal Climatic Simulation of 9000 Years before Present by Using the IAP Atmospheric General Circulation Model 被引量:5
16
作者 王会军 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1992年第4期451-457,共7页
The seasonal cycle of the climate of 9000 years before present was simulated with the IAP two-level atmospheric general circulation model. The incoming solar radiation was specified from the orbital parameters for 900... The seasonal cycle of the climate of 9000 years before present was simulated with the IAP two-level atmospheric general circulation model. The incoming solar radiation was specified from the orbital parameters for 9000 years ago. The boundary conditions of that time were prescribed to the present value because of the small differences between the two. The change in radiation makes temperature to be higher in summer and lower in winter over large areas of the land; and the increased temperature contrast between the land and the ocean strengthens the summer monsoon circulation and increases the precipitation over there. The asymmetry of temperature change between the Northern Hemisphere and the Southern Hemisphere and between summer and winter still exists, which agrees with that get from the previous perpetual experiments. 展开更多
关键词 The Seasonal Climatic Simulation of 9000 Years before Present by Using the IAP Atmospheric General Circulation model YBP than NH IAP SH
下载PDF
Modelling the January and July Climate of 9000 Years before Present 被引量:3
17
作者 王会军 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1994年第3期319-326,共8页
The January and July climate of 9000 years before present was simulated through a set of perpetual experimentsby means of the newly designed 9 Level Atmospheric General Circulation Model (AGCM) in the institute of Atm... The January and July climate of 9000 years before present was simulated through a set of perpetual experimentsby means of the newly designed 9 Level Atmospheric General Circulation Model (AGCM) in the institute of Atmospheric Physics (IAP). The results were analysed and compared with previous results simulated by the IAP 2Level AGCM. There exists good agreement between them. It is found that the temperature is higher in July and lower inJanuary in 9000 yBP than that at present. The temperature difference is more obvious in the Northern Hemispherethan in the Southern Hemisphere and greater in July than in January. These results prove the potential abilities of theg-L AGCM in the climate simulation and climate prediction. 展开更多
关键词 PALEOCLIMATE modelling. Climate Change Atmospheric General Circulation models
下载PDF
Two-moment Bulk Stratiform Cloud Microphysics in the Grid-point Atmospheric Model of IAP LASG (GAMIL) 被引量:2
18
作者 史湘军 王斌 +1 位作者 Xiaohong LIU Minghuai WANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2013年第3期868-883,共16页
A two-moment bulk stratiform microphysics scheme, including recently developed physically-based droplet activation/ice nucleation parameterizations has been implemented into the Grid-point Atmospheric Model of IAP LA... A two-moment bulk stratiform microphysics scheme, including recently developed physically-based droplet activation/ice nucleation parameterizations has been implemented into the Grid-point Atmospheric Model of IAP LASG (GAMIL) as an effort to enhance the model's capability to simulate aerosol indirect effects. Unlike the previous one-moment cloud microphysics scheme, the new scheme produces a reasonable rep- resentation of cloud particle size and number concentration. This scheme captures the observed spatial variations in cloud droplet number concentrations. Simulated ice crystal number concentrations in cirrus clouds qualitatively agree with in situ observations. The longwave and shortwave cloud forcings are in better agreement with observations. Sensitivity tests show that the column cloud droplet number concentrations calculated from two different droplet activation parameterizations are similar. However, ice crystal number concentration in mixed-phased clouds is sensitive to different heterogeneous ice nucleation formulations. The simulation with high ice crystal number concentration in mixed-phase clouds has less liquid water path and weaker cloud forcing. ~rthermore, ice crystal number concentration in cirrus clouds is sensitive to different ice nucleation parameterizations. Sensitivity tests also suggest that the impact of pre-existing ice crystals on homogeneous freezing in old clouds should be taken into account. 展开更多
关键词 two-moment cloud microphysics scheme atmospheric model
下载PDF
Evaluation and Improvement of a SVD-Based Empirical Atmospheric Model 被引量:1
19
作者 余嘉裕 张振玮 涂建翊 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2011年第3期636-652,共17页
An empirical atmospheric model(EAM) based on the singular value decomposition(SVD) method is evaluated using the composite El Ni(?)o/Southern Oscillation(ENSO) patterns of sea surface temperature (SST) and wind anomal... An empirical atmospheric model(EAM) based on the singular value decomposition(SVD) method is evaluated using the composite El Ni(?)o/Southern Oscillation(ENSO) patterns of sea surface temperature (SST) and wind anomalies as the target scenario.Two versions of the SVD-based EAM were presented for comparisons.The first version estimates the wind anomalies in response to SST variations based on modes that were calculated from a pair of global wind and SST fields(i.e.,conventional EAM or CEAM).The second version utilizes the same model design but is based on modes that were calculated in a region-wise manner by separating the tropical domain from the remaining extratropical regions(i.e.,region-wise EAM or REAM). Our study shows that,while CEAM has shown successful model performance over some tropical areas, such as the equatorial eastern Pacific(EEP),the western North Pacific(WNP),and the tropical Indian Ocean(TIO),its performance over the North Pacific(NP) seems poor.When REAM is used to estimate the wind anomalies instead of CEAM,a marked improvement over NP readily emerges.Analyses of coupled modes indicate that such an improvement can be attributed to a much stronger coupled variability captured by the first region-wise SVD mode at higher latitudes compared with that captured by the conventional one. The newly proposed way of constructing the EAM(i.e.,REAM) can be very useful in the coupled studies because it gives the model a wider application beyond the commonly accepted tropical domain. 展开更多
关键词 singular value decomposition empirical atmospheric model coupled variability
下载PDF
Generative adversarial network-based atmospheric scattering model for image dehazing 被引量:1
20
作者 Jinxiu Zhu Leilei Meng +2 位作者 Wenxia Wu Dongmin Choi Jianjun Ni 《Digital Communications and Networks》 SCIE CSCD 2021年第2期178-186,共9页
This paper presents a trainable Generative Adversarial Network(GAN)-based end-to-end system for image dehazing,which is named the DehazeGAN.DehazeGAN can be used for edge computing-based applications,such as roadside ... This paper presents a trainable Generative Adversarial Network(GAN)-based end-to-end system for image dehazing,which is named the DehazeGAN.DehazeGAN can be used for edge computing-based applications,such as roadside monitoring.It adopts two networks:one is generator(G),and the other is discriminator(D).The G adopts the U-Net architecture,whose layers are particularly designed to incorporate the atmospheric scattering model of image dehazing.By using a reformulated atmospheric scattering model,the weights of the generator network are initialized by the coarse transmission map,and the biases are adaptively adjusted by using the previous round's trained weights.Since the details may be blurry after the fog is removed,the contrast loss is added to enhance the visibility actively.Aside from the typical GAN adversarial loss,the pixel-wise Mean Square Error(MSE)loss,the contrast loss and the dark channel loss are introduced into the generator loss function.Extensive experiments on benchmark images,the results of which are compared with those of several state-of-the-art methods,demonstrate that the proposed DehazeGAN performs better and is more effective. 展开更多
关键词 Dehazing Edge computing applications Atmospheric scattering model Contrast loss
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部