Conversion of biomass to chemicals or fuels under mild condition is still a challenge. As a platform molecule for chemicals and fuels, levulinic acid (LA) has been prepared by lique-faction of biomass at high pressu...Conversion of biomass to chemicals or fuels under mild condition is still a challenge. As a platform molecule for chemicals and fuels, levulinic acid (LA) has been prepared by lique-faction of biomass at high pressure. In order to carry out the conversion from wheat straw to LA at atmosphere pressure, continuous extraction of the reactive system by an organic solvent with a higher density than that of water was utilized for degradation of pretreated biomass. Yields of LA were measured by means of gas chromatography-mass spectrometry and nuclear magnetic resonance. The results revealed that a maximum yield of 30.66% of LA can be obtained from wheat straw. In addition, the effects of biomass pretreated conditions on the LA conversion have been studied. The study provides a new route to convert biomass to valuable chemicals at atmosphere pressure.展开更多
The unstable-resonator spatially enhanced detection (USED) coherent anti-stokes Raman spectroscopy (CARS) measurements of temperature and N2 concentration in the combustion of solid propellant at atmosphere pressure a...The unstable-resonator spatially enhanced detection (USED) coherent anti-stokes Raman spectroscopy (CARS) measurements of temperature and N2 concentration in the combustion of solid propellant at atmosphere pressure are reported. The USED CARS measurement system has a high spatial solution of ~ 0.1 mm in diameter and 3 mm in length, and permits instantaneous measurement at 10-Hz rate. The single-pulse N2 Q-branch CARS spectra have been obtained from the propellant combustion. The temperatures and N2 concentrations of the propellant flame at different height have been achieved by fitting the experimental data to theoretical spectra. The results indicate that the temperature is up to ~ 2500 K with N2 concentration in a range from 10% to 26%.展开更多
In order to ascertain the effects of atmospheric pressure on developmental characteristics and the stability of AEA(air-entraining agent)solution bubbles,AEA solution experiments and AEA solution bubble experiments we...In order to ascertain the effects of atmospheric pressure on developmental characteristics and the stability of AEA(air-entraining agent)solution bubbles,AEA solution experiments and AEA solution bubble experiments were,respectively,conducted in Peking(50 m,101.2 kPa)and Lhasa(3,650 m,63.1 kPa).Surface tensions and inflection-point concentrations were tested based on AEA solutions,whilst developmental characteristics,thicknesses and elastic coefficients of liquid films were tested based on air bubbles of AEA solutions.The study involved three types of AEAs,which were TM-O,226A,and 226S.The experimental results show that initial sizes of TM-O,226A,and 226S are,respectively,increased by 43.5%,17.5%,and 3.8%.With the decrease of ambient pressure,the drainage rate and the drainage index of AEA solution bubbles increase.Interference experiments show that the liquid film thicknesses of all tested AEA solution bubbles are in micron scales.When the atmospheric pressure decreases from 101.2 to 63.1 kPa,the liquid film thicknesses of three types of AEA solutions decrease in various degrees;and film elasticities at critical thicknesses increase.Liquid film of 226S solution bubbles is the most stable,presenting as a minimum thickness variation.It should be noted that elastic coefficient of liquid film only represents the level at critical thickness,thus it can not be applied as the only evaluating indicator of bubble stability.For a type of AEA,factors affecting the stability of its bubbles under low atmospheric pressure include initial bubbles size,liquid film thickness,liquid film elasticity,ambient temperature,etc.展开更多
In this work,a gas-solid two-phase gliding arc discharge(GS-GAD)reactor was built.Gliding arc was formed in the gap between the blade electrodes,and solid powder was deposited on the sieve plate positioned beneath the...In this work,a gas-solid two-phase gliding arc discharge(GS-GAD)reactor was built.Gliding arc was formed in the gap between the blade electrodes,and solid powder was deposited on the sieve plate positioned beneath the blade electrodes.A range of experimental parameters,including the inter-electrode spacing,gas flow rate,applied voltage,and the type of the powder,were systematically varied to elucidate the influence of solid powder matter on the dynamics of gliding arc discharge(GAD).The discharge images were captured by ICCD and digital camera to investigate the mass transfer characteristics of GS-GAD,and the electrical parameters,such as the effective values of voltage,current,and discharge power were record to reveal the discharge characteristics of GS-GAD.The results demonstrate that powder undergoes spontaneous movement towards the upper region of the gliding arc due to the influence of electric field force.Increasing the discharge voltage,decreasing relative dielectric constant of the powder and reducing the electrode-to-sieve-plate distance all contribute to a greater involvement of powder in the GAD process,subsequently resulting in an enhanced powder concentration within the GAD region.Additionally,powder located beneath the gliding arc experiences downward resistance caused by the opposing gas flow and arc.Excessive gas flow rate notably hampers the powder concentration within the discharge region,and the velocity of powder motion in the upper part of the GAD region is reduced.Under the condition of electrode-to-sieve-plate distance of 30 mm,gas flow rate of 1.5 L/min,and peak-to-peak voltage of 31 kV,the best combination of arc gliding and powder spark discharge phenomena can be achieved with the addition of Al_(2)O_(3) powder.展开更多
A remote plasma,also referred to as a plasma plume(diffuse or filamentary),is normally formed downstream of an atmospheric pressure plasma jet.In this study,a diffuse plume is formed by increasing the bias voltage(U_(...A remote plasma,also referred to as a plasma plume(diffuse or filamentary),is normally formed downstream of an atmospheric pressure plasma jet.In this study,a diffuse plume is formed by increasing the bias voltage(U_(b))applied to the downstream electrode of an argon plasma jet excited by a negatively pulsed voltage.The results indicate that the plume is filamentary when U_(b)is low,which transits to the diffuse plume with increasing U_(b).The discharge initiated at the rising edge of the pulsed voltage is attributed to the diffuse plume,while that at the falling edge contributes to the filament in the plume.For the diffuse plume,the discharge intensity decreases with the increasing oxygen content(C_o).Fast photography reveals that the diffuse plume results from a negative streamer,which has a dark region near the nozzle with C_o=0%.However,the dark region is absent with C_o=0.5%.From the optical emission spectrum,the electron density,electron excitation temperature,gas temperature,and oxygen atom concentration are investigated.展开更多
The glow discharge in pure helium at atmospheric pressure, controlled by a dielectric barrier between coaxial electrodes, is investigated based on a one-dimensional self-consistent fluid model. By solving the continui...The glow discharge in pure helium at atmospheric pressure, controlled by a dielectric barrier between coaxial electrodes, is investigated based on a one-dimensional self-consistent fluid model. By solving the continuity equations for electrons, ions, and excited atoms, with the current conservation equation and the electric field profile, the time evolution of the discharge current, gas voltage and the surface density of charged particles on the dielectric barrier are calculated. The simulation results show that the peak values of the discharge current, gas voltage and electric field in the first half period are asymmetric to the second half. When the current reaches its positive or negative maximum, the electric field profile, and the electron and ion densities represent similar properties to the typical glow discharge at low pressures. Obviously there exist a cathode fall, a negative glow region, and a positive column. Effects of the barrier position in between the two coaxial electrodes and the discharge gap width on discharge current characteristics are also analysed. The result indicates that, in the case when the dielectric covering the outer electrode only, the gas is punctured earlier during the former half period and later during the latter half period than other cases, also the current peak value is higher, and the difference of pulse width between the two half periods is more obvious. On reducing the gap width, the multiple current pulse discharge happens.展开更多
Atmospheric pressure helium/water dielectric barrier discharge(DBD) plasma is used to investigate the generation of reactive species in a gas–liquid interface and in a liquid. The emission intensity of the reactive...Atmospheric pressure helium/water dielectric barrier discharge(DBD) plasma is used to investigate the generation of reactive species in a gas–liquid interface and in a liquid. The emission intensity of the reactive species is measured by optical emission spectroscopy(OES)with different discharge powers at the gas–liquid interface. Spectrophotometry is used to analyze the reactive species induced by the plasma in the liquid. The concentration of OH radicals reaches 2.2 μm after 3 min of discharge treatment. In addition, the concentration of primary longlived reactive species such as H;O;, NO;and O;are measured based on plasma treatment time.After 5 min of discharge treatment, the concentration of H;O;, NO;, and O;increased from 0 mg?·?L;to 96 mg?·?L;, 19.5 mg?·?L;, and 3.5 mg?·?L;, respectively. The water treated by plasma still contained a considerable concentration of reactive species after 6 h of storage. The results will contribute to optimizing the DBD plasma system for biological decontamination.展开更多
The dielectric barrier discharge characteristics in helium at atmospheric pressure are simulated based on a one- dimensional fluid model. Under some discharge conditions, the results show that one discharge pulse per ...The dielectric barrier discharge characteristics in helium at atmospheric pressure are simulated based on a one- dimensional fluid model. Under some discharge conditions, the results show that one discharge pulse per half voltage cycle usually appears when the amplitude of external voltage is low, while a glow-like discharge occurs at high voltage. For the one discharge pulse per half voltage cycle, the maximum of electron density appears near the anode at the beginning of the discharge, which corresponds to a Townsend discharge mode. The maxima of the electron density and the intensity of electric field appear in the vicinity of the cathode when the discharge current increases to some extent, which indicates the formation of a cathode-fall region. Therefore, the discharge has a transition from the Townsend mode to the glow discharge mode during one discharge pulse, which is consistent with previous experimental results.展开更多
To study the effect of atmospheric pressure on the properties of fresh and hardened airentrained concrete, three kinds of air entraining agents were used for preparing air-entrained concrete in the plateaus(Lhasa, 61 ...To study the effect of atmospheric pressure on the properties of fresh and hardened airentrained concrete, three kinds of air entraining agents were used for preparing air-entrained concrete in the plateaus(Lhasa, 61 kPa) and the plains(Beijing, 101 kPa). Air content, slump, compressive strength and pore structure of the three air-entrained concretes were tested in these two places. It is found that the air content of concrete under low atmospheric pressure(LAP) is 4%-36% lower than that of concrete under normal atmospheric pressure(NAP), which explaines the decrease of slump for air-entrained concrete under LAP. Pore number of hardened concrete under LAP is reduced by 48%-69%. While, the proportion of big pores(pore diameter >1 200 μm) and air void spacing factor are increased by 1.5%-7.3% and 51%-92%, respectively. The deterioration of pore structure results in a 3%-9% reduction in the compressive strength of concrete. From the results we have obtained, it can be concluded that the increase of critical nucleation energy of air bubbles and the decrease of volumetric compressibility coefficient of air in the concrete are responsible for the variation of air content and pore structure of concrete under LAP.展开更多
A coaxial dielectric barrier discharge plasma jet was designed, which can be operated in atmospheric pressure argon under an intermediate frequency sinusoidal resonant power supply, and an atmospheric pressure glow-li...A coaxial dielectric barrier discharge plasma jet was designed, which can be operated in atmospheric pressure argon under an intermediate frequency sinusoidal resonant power supply, and an atmospheric pressure glow-like discharge was achieved. Two kinds of typical bacteria, i.e., the Staphylococcus aureus (S. aureus) and Escherichia coil (E. coil), were employed to study the bacterial inactivation mechanism by means of the non-thermal plasma. The killing log value (KLV) of S. aureus reached up to 5.38 with a treatment time of 90 s and that of E. coil up to 5.36 with 60 s, respectively. According to the argon emission spectra of the plasma jet and the scanning electron microscope (SEM) images of the two bacteria before and after the plasma treatment, it is concluded that the reactive species in the argon plasma played a major role in the bacterial inactivation, while the heat, electric field and UV photons had little effect.展开更多
In this paper, the characteristics of an atmospheric pressure helium plasma jet generated by a dual-power electrode (DPE) configuration are investigated by using a two-dimensional fluid model. The effect of a needle...In this paper, the characteristics of an atmospheric pressure helium plasma jet generated by a dual-power electrode (DPE) configuration are investigated by using a two-dimensional fluid model. The effect of a needle electrode on the discharge is studied by comparing the results of the DPE configuration with those of the single ring electrode configuration. It is found that the existence of the needle leads to the generation of a helium plasma jet with a higher propagation velocity, higher species density, and larger discharge width. Furthermore, the influences of the needle radius and needle-to-ring discharge gap on the generation of a plasma jet are also studied. The simulation results indicate that the needle electrode has an evident influence on the plasma jet characteristics.展开更多
Objective Although many studies have examined the effects of ambient temperatures on mortality, little evidence is on health impacts of atmospheric pressure and relative humidity. This study aimed to assess the impact...Objective Although many studies have examined the effects of ambient temperatures on mortality, little evidence is on health impacts of atmospheric pressure and relative humidity. This study aimed to assess the impacts of atmospheric pressure and relative humidity on mortality in Guangzhou, China. Methods This study included 213,737 registered deaths during 2003-2011 in Guangzhou, China. A quasi-Poisson regression with a distributed lag non-linear model was used to assess the effects of atmospheric pressure/relative humidity. Results We found significant effect of low atmospheric pressure/relative humidity on mortality. There was a 1.79% (95% confidence interval: 0.38%-3.22%) increase in non-accidental mortality and a 2.27% (0.07%-4.51%) increase in cardiovascular mortality comparing the 5th and 25th percentile of atmospheric pressure. A 3.97% (0.67%-7.39%) increase in cardiovascular mortality was also observed comparing the 5th and 25th percentile of relative humidity. Women were more vulnerable to decrease in atmospheric pressure and relative humidity than men. Age and education attainment were also potential effect modifiers. Furthermore, low atmospheric pressure and relative humidity increased temperature-related mortality. Conclusion Both low atmospheric pressure and relative humidity are important risk factors of mortality. Our findings would be helpful to develop health risk assessment and climate policy interventions that would better protect vulnerable subgroups of the population.展开更多
Non-thermal plasmas under atmospheric pressure are of great interest in polymer surface processing because of their convenience, effectiveness and low cost. In this paper, the treatment of Polyethylene terephthalate (...Non-thermal plasmas under atmospheric pressure are of great interest in polymer surface processing because of their convenience, effectiveness and low cost. In this paper, the treatment of Polyethylene terephthalate (PET) film surface for improving hydrophilicity using the non-thermal plasma generated by atmospheric pressure glow discharge (APGD) in air is conducted. The discharge characteristics of APGD are shown by measurement of their electrical discharge parameters and observation of light-emission phenomena, and the surface properties of PET before and after the APGD treatment are studied using contact angle measurement, x-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). It is found that the APGD is homogeneous and stable in the whole gas gap, which differs from the commonly filamentary dielectric barrier discharge (DBD). A short time (several seconds) APGD treatment can modify the surface characteristics of PET film markedly and uniformly. After 10 s APGD treatment, the展开更多
Wheat (Triticum aestivum) seeds were treated with atmospheric pressure gliding arc discharge plasmas to investigate the effects on water absorption, seed germination rate, seedling growth and yield in wheat. The sur...Wheat (Triticum aestivum) seeds were treated with atmospheric pressure gliding arc discharge plasmas to investigate the effects on water absorption, seed germination rate, seedling growth and yield in wheat. The surface architectures and functionalities of the seeds were found to modify due to plasma treatments. 6 rain treatment was provided 95%-100% germination rate. For the treatment duration of 3 and 9 rain the growth activity, dry matter accumulation, leaves chlorophyll contents, longest spikes, number of spikes/spikelet and total soluble protein content in shoots were improved. The grain yield of wheat was increased ,--20% by 6 min treatment with H2O/O2 plasma with respect to control.展开更多
An atmospheric pressure nonequilibrium argon/oxygen plasma jet assisted by the preionization of syringe needle electrode discharge is reported. With the syringe needle plasma as its pre-ionization source, the hybrid b...An atmospheric pressure nonequilibrium argon/oxygen plasma jet assisted by the preionization of syringe needle electrode discharge is reported. With the syringe needle plasma as its pre-ionization source, the hybrid barrier-jet was shown to generate uniform discharge with a lower breakdown voltage and a relatively low gas temperature varying from 390 K to 440 K, even when the vol.% oxygen in argon was up to 6%. Utilizing the actinometry method, the concentration of atomic oxygen was estimated to be about in an orders of magnitude of 10^17 cm^-3. The argon/oxygen plasma jet was then employed to clean out heat transfer oil, with a maximum cleaning rate of 0.1 mm/s achieved.展开更多
We present a narrative of the eruptive events culminating in the cataclysmic January 15, 2022 eruption of Hunga Tonga-Hunga Ha’apai Volcano by synthesizing diverse preliminary seismic, volcanological, sound wave, and...We present a narrative of the eruptive events culminating in the cataclysmic January 15, 2022 eruption of Hunga Tonga-Hunga Ha’apai Volcano by synthesizing diverse preliminary seismic, volcanological, sound wave, and lightning data available within the first few weeks after the eruption occurred. The first hour of eruptive activity produced fast-propagating tsunami waves, long-period seismic waves, loud audible sound waves, infrasonic waves, exceptionally intense volcanic lightning and an unsteady volcanic plume that transiently reached-at 58km-the Earth’s mesosphere. Energetic seismic signals were recorded worldwide and the globally stacked seismogram showed episodic seismic events within the most intense periods of phreatoplinian activity, and they correlated well with the infrasound pressure waveform recorded in Fiji. Gravity wave signals were strong enough to be observed over the entire planet in just the first few hours, with some circling the Earth multiple times subsequently. These large-amplitude, long-wavelength atmospheric disturbances come from the Earth’s atmosphere being forced by the magmatic mixture of tephra, melt and gasses emitted by the unsteady but quasicontinuous eruption from 0402±1–1800 UTC on January 15, 2022. Atmospheric forcing lasted much longer than rupturing from large earthquakes recorded on modern instruments, producing a type of shock wave that originated from the interaction between compressed air and ambient(wavy) sea surface. This scenario differs from conventional ideas of earthquake slip, landslides, or caldera collapse-generated tsunami waves because of the enormous(~1000x) volumetric change due to the supercritical nature of volatiles associated with the hot,volatile-rich phreatoplinian plume. The time series of plume altitude can be translated to volumetric discharge and mass flow rate. For an eruption duration of ~12 h, the eruptive volume and mass are estimated at 1.9 km^(3) and~2 900 Tg, respectively, corresponding to a VEI of 5–6 for this event. The high frequency and intensity of lightning was enhanced by the production of fine ash due to magma-seawater interaction with concomitant high charge per unit mass and the high pre-eruptive concentration of dissolved volatiles. Analysis of lightning flash frequencies provides a rapid metric for plume activity and eruption magnitude. Many aspects of this eruption await further investigation by multidisciplinary teams. It represents a unique opportunity for fundamental research regarding the complex, non-linear behavior of high energetic volcanic eruptions and attendant phenomena, with critical implications for hazard mitigation, volcano forecasting, and first-response efforts in future disasters.展开更多
An atmospheric pressure radio-frequency plasma jet that can eject cold plasma has been developed. In this paper, the configuration of this type of plasma jet is illustrated and its discharge characteristics curves are...An atmospheric pressure radio-frequency plasma jet that can eject cold plasma has been developed. In this paper, the configuration of this type of plasma jet is illustrated and its discharge characteristics curves are studied with a current and a voltage probe. A thermal couple is used to measure the temperature distribution along the axis of the jet stream. The temperature distribution curve is generated for the He/O-2 jet stream at the discharge power of 150 W. This jet can etch the photo-resistant material at an average rate of 100 nm/min on the surface of silicon wafers at a right angle.展开更多
The surface dielectric barrier discharge (SDBD) plasma actuator has shown great promise as an aerodynamic flow control device. In this paper, the encapsulated electrode width of a SDBD actuator is changed to study t...The surface dielectric barrier discharge (SDBD) plasma actuator has shown great promise as an aerodynamic flow control device. In this paper, the encapsulated electrode width of a SDBD actuator is changed to study the airflow acceleration behavior. The effects of encapsulated electrode width on the actuator performance are experimentally investigated by measuring the dielectric layer surface potential, time-averaged ionic wind velocity and thrust force. Experimental results show that the airflow velocity and thrust force increase with the encapsulated electrode width. The results can be attributed to the distinct plasma distribution at different encapsulated electrode widths.展开更多
An improved self-consistent, multi-component, and one-dimensional plasma model for simulating atmospheric pressure argon glow discharge is presented. In the model, both the plasma hydrodynamics model and chemical mode...An improved self-consistent, multi-component, and one-dimensional plasma model for simulating atmospheric pressure argon glow discharge is presented. In the model, both the plasma hydrodynamics model and chemical model are considered. The numerical simulation is carried out for parallel-plate geometry with a separation of 0.06 cm. The results show that Ar* plays a major role in the discharge, which is mainly produced by ground state excitation reaction. The electron temperature reaches its maximum in the cathode sheath but maintains a low value (0.23 eV) in bulk plasma. Elastic collision is the dominant volumetric electron energy loss in atmosphere argon glow discharge, which is negligible in low pressure argon glow discharge. The metastable step-wise ionization is the main mechanism for electron production to sustain the discharge. However, the highest contribution to electron production rate is ground state ionization reaction. The bremsstrahlung power density is related to electric voltage. With the increase of the electric voltage, the bremsstrahlung power density increases, namely, the strength of ultraviolet radiation spectrum enhances in the cathode sheath.展开更多
An atmospheric pressure plasma jet generated in Ar and O2/Ar mixtures has been investigated by specially designed equipment with double power electrodes at 20~32 kHz, and their effects on the cleaning of surfaces have...An atmospheric pressure plasma jet generated in Ar and O2/Ar mixtures has been investigated by specially designed equipment with double power electrodes at 20~32 kHz, and their effects on the cleaning of surfaces have been studied. Properties of the jet discharge are studied by electrical diagnostics, including the waveform of discharge voltage, discharge current and the Q-V Lissajous figures. The optical emission spectroscopy is used to measure the plasma parameters, such as the excitation temperature and the gas temperature. It is found that the consumed power and the excitation temperature increase with increase of the discharge frequency. On the other hand, at the same discharge frequency, these parameters in O2/Ar mixture plasma are found to be much larger. The effect on surface cleaning is studied from the changes in the contact angle. For Ar plasma jet, the contact angle decreases with increase of the discharge frequency. For O2/Ar mixture plasma jet, the contact angle decreases with increase of discharge frequency up to 26 kHz, however, further increase of discharge frequency does not show further decrease in the contact angle. At the same discharge frequency, the contact angle after O2/Ar mixture plasma cleaning is found to be much lower compared to the case of pure Ar. From the results of quadrupole mass-spectrum analysis, we can identify more fragment molecules of CO and H2O in the emitted gases after O2/Ar plasma jet treatment compared with Ar plasma jet treatment, which are produced by the decomposition of surface organic contaminants during the cleaning process.展开更多
文摘Conversion of biomass to chemicals or fuels under mild condition is still a challenge. As a platform molecule for chemicals and fuels, levulinic acid (LA) has been prepared by lique-faction of biomass at high pressure. In order to carry out the conversion from wheat straw to LA at atmosphere pressure, continuous extraction of the reactive system by an organic solvent with a higher density than that of water was utilized for degradation of pretreated biomass. Yields of LA were measured by means of gas chromatography-mass spectrometry and nuclear magnetic resonance. The results revealed that a maximum yield of 30.66% of LA can be obtained from wheat straw. In addition, the effects of biomass pretreated conditions on the LA conversion have been studied. The study provides a new route to convert biomass to valuable chemicals at atmosphere pressure.
文摘The unstable-resonator spatially enhanced detection (USED) coherent anti-stokes Raman spectroscopy (CARS) measurements of temperature and N2 concentration in the combustion of solid propellant at atmosphere pressure are reported. The USED CARS measurement system has a high spatial solution of ~ 0.1 mm in diameter and 3 mm in length, and permits instantaneous measurement at 10-Hz rate. The single-pulse N2 Q-branch CARS spectra have been obtained from the propellant combustion. The temperatures and N2 concentrations of the propellant flame at different height have been achieved by fitting the experimental data to theoretical spectra. The results indicate that the temperature is up to ~ 2500 K with N2 concentration in a range from 10% to 26%.
基金Funded by the National Natural Science Foundation of China(Nos.52178428,52178427,and 52308454)the Science and Technology Project of Tibet Department of Transportation(No.XZJTKJ[2020]04)。
文摘In order to ascertain the effects of atmospheric pressure on developmental characteristics and the stability of AEA(air-entraining agent)solution bubbles,AEA solution experiments and AEA solution bubble experiments were,respectively,conducted in Peking(50 m,101.2 kPa)and Lhasa(3,650 m,63.1 kPa).Surface tensions and inflection-point concentrations were tested based on AEA solutions,whilst developmental characteristics,thicknesses and elastic coefficients of liquid films were tested based on air bubbles of AEA solutions.The study involved three types of AEAs,which were TM-O,226A,and 226S.The experimental results show that initial sizes of TM-O,226A,and 226S are,respectively,increased by 43.5%,17.5%,and 3.8%.With the decrease of ambient pressure,the drainage rate and the drainage index of AEA solution bubbles increase.Interference experiments show that the liquid film thicknesses of all tested AEA solution bubbles are in micron scales.When the atmospheric pressure decreases from 101.2 to 63.1 kPa,the liquid film thicknesses of three types of AEA solutions decrease in various degrees;and film elasticities at critical thicknesses increase.Liquid film of 226S solution bubbles is the most stable,presenting as a minimum thickness variation.It should be noted that elastic coefficient of liquid film only represents the level at critical thickness,thus it can not be applied as the only evaluating indicator of bubble stability.For a type of AEA,factors affecting the stability of its bubbles under low atmospheric pressure include initial bubbles size,liquid film thickness,liquid film elasticity,ambient temperature,etc.
基金supported by 173 Program of China,and National Natural Science Foundation of China(No.92271116).
文摘In this work,a gas-solid two-phase gliding arc discharge(GS-GAD)reactor was built.Gliding arc was formed in the gap between the blade electrodes,and solid powder was deposited on the sieve plate positioned beneath the blade electrodes.A range of experimental parameters,including the inter-electrode spacing,gas flow rate,applied voltage,and the type of the powder,were systematically varied to elucidate the influence of solid powder matter on the dynamics of gliding arc discharge(GAD).The discharge images were captured by ICCD and digital camera to investigate the mass transfer characteristics of GS-GAD,and the electrical parameters,such as the effective values of voltage,current,and discharge power were record to reveal the discharge characteristics of GS-GAD.The results demonstrate that powder undergoes spontaneous movement towards the upper region of the gliding arc due to the influence of electric field force.Increasing the discharge voltage,decreasing relative dielectric constant of the powder and reducing the electrode-to-sieve-plate distance all contribute to a greater involvement of powder in the GAD process,subsequently resulting in an enhanced powder concentration within the GAD region.Additionally,powder located beneath the gliding arc experiences downward resistance caused by the opposing gas flow and arc.Excessive gas flow rate notably hampers the powder concentration within the discharge region,and the velocity of powder motion in the upper part of the GAD region is reduced.Under the condition of electrode-to-sieve-plate distance of 30 mm,gas flow rate of 1.5 L/min,and peak-to-peak voltage of 31 kV,the best combination of arc gliding and powder spark discharge phenomena can be achieved with the addition of Al_(2)O_(3) powder.
基金supported by National Natural Science Foundation of China(Nos.12375250,11875121,51977057 and 11805013)the Natural Science Foundation of Hebei Province(Nos.A2020201025 and A2022201036)+3 种基金Hebei Province Optoelectronic Information Materials Laboratory Performance Subsidy Fund Project(No.22567634H)Funds for Distinguished Young Scientists of Hebei Province(No.A2012201045)the Natural Science Interdisciplinary Research Program of Hebei University(Nos.DXK201908 and DXK202011)the Post-graduate’s Innovation Fund Project of Hebei University(No.HBU2022bs004)。
文摘A remote plasma,also referred to as a plasma plume(diffuse or filamentary),is normally formed downstream of an atmospheric pressure plasma jet.In this study,a diffuse plume is formed by increasing the bias voltage(U_(b))applied to the downstream electrode of an argon plasma jet excited by a negatively pulsed voltage.The results indicate that the plume is filamentary when U_(b)is low,which transits to the diffuse plume with increasing U_(b).The discharge initiated at the rising edge of the pulsed voltage is attributed to the diffuse plume,while that at the falling edge contributes to the filament in the plume.For the diffuse plume,the discharge intensity decreases with the increasing oxygen content(C_o).Fast photography reveals that the diffuse plume results from a negative streamer,which has a dark region near the nozzle with C_o=0%.However,the dark region is absent with C_o=0.5%.From the optical emission spectrum,the electron density,electron excitation temperature,gas temperature,and oxygen atom concentration are investigated.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 50537020 and 50528707).
文摘The glow discharge in pure helium at atmospheric pressure, controlled by a dielectric barrier between coaxial electrodes, is investigated based on a one-dimensional self-consistent fluid model. By solving the continuity equations for electrons, ions, and excited atoms, with the current conservation equation and the electric field profile, the time evolution of the discharge current, gas voltage and the surface density of charged particles on the dielectric barrier are calculated. The simulation results show that the peak values of the discharge current, gas voltage and electric field in the first half period are asymmetric to the second half. When the current reaches its positive or negative maximum, the electric field profile, and the electron and ion densities represent similar properties to the typical glow discharge at low pressures. Obviously there exist a cathode fall, a negative glow region, and a positive column. Effects of the barrier position in between the two coaxial electrodes and the discharge gap width on discharge current characteristics are also analysed. The result indicates that, in the case when the dielectric covering the outer electrode only, the gas is punctured earlier during the former half period and later during the latter half period than other cases, also the current peak value is higher, and the difference of pulse width between the two half periods is more obvious. On reducing the gap width, the multiple current pulse discharge happens.
基金jointly supported by the Science Foundation of the Institute of Plasma Physics, the Chinese Academy of Sciences (No. DSJJ-14-YY02)National Natural Science Foundation of China (Grant Nos. 11475174 and 51777206)
文摘Atmospheric pressure helium/water dielectric barrier discharge(DBD) plasma is used to investigate the generation of reactive species in a gas–liquid interface and in a liquid. The emission intensity of the reactive species is measured by optical emission spectroscopy(OES)with different discharge powers at the gas–liquid interface. Spectrophotometry is used to analyze the reactive species induced by the plasma in the liquid. The concentration of OH radicals reaches 2.2 μm after 3 min of discharge treatment. In addition, the concentration of primary longlived reactive species such as H;O;, NO;and O;are measured based on plasma treatment time.After 5 min of discharge treatment, the concentration of H;O;, NO;, and O;increased from 0 mg?·?L;to 96 mg?·?L;, 19.5 mg?·?L;, and 3.5 mg?·?L;, respectively. The water treated by plasma still contained a considerable concentration of reactive species after 6 h of storage. The results will contribute to optimizing the DBD plasma system for biological decontamination.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10805013 and 51077035)the Funds for Distinguished Young Scientists of Hebei University, China (Grant No. A2012201045)+2 种基金the Key Project of Ministry of Education of China (Grant No. 210014)the Natural Science Foundation of Hebei province, China (Grant Nos. A2009000149 and A2011201132)the Outstanding Youth Project of Education Department of China (Grant No. Y2011120)
文摘The dielectric barrier discharge characteristics in helium at atmospheric pressure are simulated based on a one- dimensional fluid model. Under some discharge conditions, the results show that one discharge pulse per half voltage cycle usually appears when the amplitude of external voltage is low, while a glow-like discharge occurs at high voltage. For the one discharge pulse per half voltage cycle, the maximum of electron density appears near the anode at the beginning of the discharge, which corresponds to a Townsend discharge mode. The maxima of the electron density and the intensity of electric field appear in the vicinity of the cathode when the discharge current increases to some extent, which indicates the formation of a cathode-fall region. Therefore, the discharge has a transition from the Townsend mode to the glow discharge mode during one discharge pulse, which is consistent with previous experimental results.
基金Funed by the National Key R&D Program of China(No.2017YFB0309903)
文摘To study the effect of atmospheric pressure on the properties of fresh and hardened airentrained concrete, three kinds of air entraining agents were used for preparing air-entrained concrete in the plateaus(Lhasa, 61 kPa) and the plains(Beijing, 101 kPa). Air content, slump, compressive strength and pore structure of the three air-entrained concretes were tested in these two places. It is found that the air content of concrete under low atmospheric pressure(LAP) is 4%-36% lower than that of concrete under normal atmospheric pressure(NAP), which explaines the decrease of slump for air-entrained concrete under LAP. Pore number of hardened concrete under LAP is reduced by 48%-69%. While, the proportion of big pores(pore diameter >1 200 μm) and air void spacing factor are increased by 1.5%-7.3% and 51%-92%, respectively. The deterioration of pore structure results in a 3%-9% reduction in the compressive strength of concrete. From the results we have obtained, it can be concluded that the increase of critical nucleation energy of air bubbles and the decrease of volumetric compressibility coefficient of air in the concrete are responsible for the variation of air content and pore structure of concrete under LAP.
基金supported in part by China Foundation for the Author of National Excellent Doctoral Dissertation(No.200338)New Century Excellent Talents in University(No.NCET-04-0943)
文摘A coaxial dielectric barrier discharge plasma jet was designed, which can be operated in atmospheric pressure argon under an intermediate frequency sinusoidal resonant power supply, and an atmospheric pressure glow-like discharge was achieved. Two kinds of typical bacteria, i.e., the Staphylococcus aureus (S. aureus) and Escherichia coil (E. coil), were employed to study the bacterial inactivation mechanism by means of the non-thermal plasma. The killing log value (KLV) of S. aureus reached up to 5.38 with a treatment time of 90 s and that of E. coil up to 5.36 with 60 s, respectively. According to the argon emission spectra of the plasma jet and the scanning electron microscope (SEM) images of the two bacteria before and after the plasma treatment, it is concluded that the reactive species in the argon plasma played a major role in the bacterial inactivation, while the heat, electric field and UV photons had little effect.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10775026,11275042,11305026,and 11405042)
文摘In this paper, the characteristics of an atmospheric pressure helium plasma jet generated by a dual-power electrode (DPE) configuration are investigated by using a two-dimensional fluid model. The effect of a needle electrode on the discharge is studied by comparing the results of the DPE configuration with those of the single ring electrode configuration. It is found that the existence of the needle leads to the generation of a helium plasma jet with a higher propagation velocity, higher species density, and larger discharge width. Furthermore, the influences of the needle radius and needle-to-ring discharge gap on the generation of a plasma jet are also studied. The simulation results indicate that the needle electrode has an evident influence on the plasma jet characteristics.
基金funded by National Nature Science Foundation of China[81102207]Science and Technology Planning Project of Guangdong Province,China[2013B021800041]GUO Yu Ming is supported by NHMRC Centre for air quality and health research and evaluation,Australia[APP 1030259]
文摘Objective Although many studies have examined the effects of ambient temperatures on mortality, little evidence is on health impacts of atmospheric pressure and relative humidity. This study aimed to assess the impacts of atmospheric pressure and relative humidity on mortality in Guangzhou, China. Methods This study included 213,737 registered deaths during 2003-2011 in Guangzhou, China. A quasi-Poisson regression with a distributed lag non-linear model was used to assess the effects of atmospheric pressure/relative humidity. Results We found significant effect of low atmospheric pressure/relative humidity on mortality. There was a 1.79% (95% confidence interval: 0.38%-3.22%) increase in non-accidental mortality and a 2.27% (0.07%-4.51%) increase in cardiovascular mortality comparing the 5th and 25th percentile of atmospheric pressure. A 3.97% (0.67%-7.39%) increase in cardiovascular mortality was also observed comparing the 5th and 25th percentile of relative humidity. Women were more vulnerable to decrease in atmospheric pressure and relative humidity than men. Age and education attainment were also potential effect modifiers. Furthermore, low atmospheric pressure and relative humidity increased temperature-related mortality. Conclusion Both low atmospheric pressure and relative humidity are important risk factors of mortality. Our findings would be helpful to develop health risk assessment and climate policy interventions that would better protect vulnerable subgroups of the population.
文摘Non-thermal plasmas under atmospheric pressure are of great interest in polymer surface processing because of their convenience, effectiveness and low cost. In this paper, the treatment of Polyethylene terephthalate (PET) film surface for improving hydrophilicity using the non-thermal plasma generated by atmospheric pressure glow discharge (APGD) in air is conducted. The discharge characteristics of APGD are shown by measurement of their electrical discharge parameters and observation of light-emission phenomena, and the surface properties of PET before and after the APGD treatment are studied using contact angle measurement, x-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). It is found that the APGD is homogeneous and stable in the whole gas gap, which differs from the commonly filamentary dielectric barrier discharge (DBD). A short time (several seconds) APGD treatment can modify the surface characteristics of PET film markedly and uniformly. After 10 s APGD treatment, the
基金Partial financial support has been provided by the Ministry of Science and Technology, Republic of Bangladesh: 39.00.0000.09.06.79.2017/2/98ESBangladesh Council for Scientific and Industrial Research (BCSIR) for providing Professor Abdullah Al-Muti Sharfuddin fellowship
文摘Wheat (Triticum aestivum) seeds were treated with atmospheric pressure gliding arc discharge plasmas to investigate the effects on water absorption, seed germination rate, seedling growth and yield in wheat. The surface architectures and functionalities of the seeds were found to modify due to plasma treatments. 6 rain treatment was provided 95%-100% germination rate. For the treatment duration of 3 and 9 rain the growth activity, dry matter accumulation, leaves chlorophyll contents, longest spikes, number of spikes/spikelet and total soluble protein content in shoots were improved. The grain yield of wheat was increased ,--20% by 6 min treatment with H2O/O2 plasma with respect to control.
基金supported by National Natural Science Foundation of China (Nos.10775026, 50537020, 50528707)
文摘An atmospheric pressure nonequilibrium argon/oxygen plasma jet assisted by the preionization of syringe needle electrode discharge is reported. With the syringe needle plasma as its pre-ionization source, the hybrid barrier-jet was shown to generate uniform discharge with a lower breakdown voltage and a relatively low gas temperature varying from 390 K to 440 K, even when the vol.% oxygen in argon was up to 6%. Utilizing the actinometry method, the concentration of atomic oxygen was estimated to be about in an orders of magnitude of 10^17 cm^-3. The argon/oxygen plasma jet was then employed to clean out heat transfer oil, with a maximum cleaning rate of 0.1 mm/s achieved.
基金partially supported by US Department of Energy Grant DE-SC0019759National Science Foundation (NSF) Grants EAR-1918126, EAR-2027150, EAR-1925965, and OCE-1842989。
文摘We present a narrative of the eruptive events culminating in the cataclysmic January 15, 2022 eruption of Hunga Tonga-Hunga Ha’apai Volcano by synthesizing diverse preliminary seismic, volcanological, sound wave, and lightning data available within the first few weeks after the eruption occurred. The first hour of eruptive activity produced fast-propagating tsunami waves, long-period seismic waves, loud audible sound waves, infrasonic waves, exceptionally intense volcanic lightning and an unsteady volcanic plume that transiently reached-at 58km-the Earth’s mesosphere. Energetic seismic signals were recorded worldwide and the globally stacked seismogram showed episodic seismic events within the most intense periods of phreatoplinian activity, and they correlated well with the infrasound pressure waveform recorded in Fiji. Gravity wave signals were strong enough to be observed over the entire planet in just the first few hours, with some circling the Earth multiple times subsequently. These large-amplitude, long-wavelength atmospheric disturbances come from the Earth’s atmosphere being forced by the magmatic mixture of tephra, melt and gasses emitted by the unsteady but quasicontinuous eruption from 0402±1–1800 UTC on January 15, 2022. Atmospheric forcing lasted much longer than rupturing from large earthquakes recorded on modern instruments, producing a type of shock wave that originated from the interaction between compressed air and ambient(wavy) sea surface. This scenario differs from conventional ideas of earthquake slip, landslides, or caldera collapse-generated tsunami waves because of the enormous(~1000x) volumetric change due to the supercritical nature of volatiles associated with the hot,volatile-rich phreatoplinian plume. The time series of plume altitude can be translated to volumetric discharge and mass flow rate. For an eruption duration of ~12 h, the eruptive volume and mass are estimated at 1.9 km^(3) and~2 900 Tg, respectively, corresponding to a VEI of 5–6 for this event. The high frequency and intensity of lightning was enhanced by the production of fine ash due to magma-seawater interaction with concomitant high charge per unit mass and the high pre-eruptive concentration of dissolved volatiles. Analysis of lightning flash frequencies provides a rapid metric for plume activity and eruption magnitude. Many aspects of this eruption await further investigation by multidisciplinary teams. It represents a unique opportunity for fundamental research regarding the complex, non-linear behavior of high energetic volcanic eruptions and attendant phenomena, with critical implications for hazard mitigation, volcano forecasting, and first-response efforts in future disasters.
文摘An atmospheric pressure radio-frequency plasma jet that can eject cold plasma has been developed. In this paper, the configuration of this type of plasma jet is illustrated and its discharge characteristics curves are studied with a current and a voltage probe. A thermal couple is used to measure the temperature distribution along the axis of the jet stream. The temperature distribution curve is generated for the He/O-2 jet stream at the discharge power of 150 W. This jet can etch the photo-resistant material at an average rate of 100 nm/min on the surface of silicon wafers at a right angle.
基金supported by National Natural Science Foundation of China(No.11175037)National Natural Science Foundation for Young Scientists of China(No.11305017)Special Fund for Theoretical Physics(No.11247239)
文摘The surface dielectric barrier discharge (SDBD) plasma actuator has shown great promise as an aerodynamic flow control device. In this paper, the encapsulated electrode width of a SDBD actuator is changed to study the airflow acceleration behavior. The effects of encapsulated electrode width on the actuator performance are experimentally investigated by measuring the dielectric layer surface potential, time-averaged ionic wind velocity and thrust force. Experimental results show that the airflow velocity and thrust force increase with the encapsulated electrode width. The results can be attributed to the distinct plasma distribution at different encapsulated electrode widths.
基金supported by the Major State Basic Research Development Program of China (973 Program) (No. 2011CB20941)Scientific Research Foundation of State Key Lab. of Power Transmission Equipment and System Security of China (No. 2007DA10512709102)+1 种基金National Natural Science Foundation of China (No. 51007096)the Fundamental Research Funds for the Central Universities of China(No. CDJZR10150001)
文摘An improved self-consistent, multi-component, and one-dimensional plasma model for simulating atmospheric pressure argon glow discharge is presented. In the model, both the plasma hydrodynamics model and chemical model are considered. The numerical simulation is carried out for parallel-plate geometry with a separation of 0.06 cm. The results show that Ar* plays a major role in the discharge, which is mainly produced by ground state excitation reaction. The electron temperature reaches its maximum in the cathode sheath but maintains a low value (0.23 eV) in bulk plasma. Elastic collision is the dominant volumetric electron energy loss in atmosphere argon glow discharge, which is negligible in low pressure argon glow discharge. The metastable step-wise ionization is the main mechanism for electron production to sustain the discharge. However, the highest contribution to electron production rate is ground state ionization reaction. The bremsstrahlung power density is related to electric voltage. With the increase of the electric voltage, the bremsstrahlung power density increases, namely, the strength of ultraviolet radiation spectrum enhances in the cathode sheath.
基金supported by National Natural Science Foundation of China(Nos.51077008 and 11247239)
文摘An atmospheric pressure plasma jet generated in Ar and O2/Ar mixtures has been investigated by specially designed equipment with double power electrodes at 20~32 kHz, and their effects on the cleaning of surfaces have been studied. Properties of the jet discharge are studied by electrical diagnostics, including the waveform of discharge voltage, discharge current and the Q-V Lissajous figures. The optical emission spectroscopy is used to measure the plasma parameters, such as the excitation temperature and the gas temperature. It is found that the consumed power and the excitation temperature increase with increase of the discharge frequency. On the other hand, at the same discharge frequency, these parameters in O2/Ar mixture plasma are found to be much larger. The effect on surface cleaning is studied from the changes in the contact angle. For Ar plasma jet, the contact angle decreases with increase of the discharge frequency. For O2/Ar mixture plasma jet, the contact angle decreases with increase of discharge frequency up to 26 kHz, however, further increase of discharge frequency does not show further decrease in the contact angle. At the same discharge frequency, the contact angle after O2/Ar mixture plasma cleaning is found to be much lower compared to the case of pure Ar. From the results of quadrupole mass-spectrum analysis, we can identify more fragment molecules of CO and H2O in the emitted gases after O2/Ar plasma jet treatment compared with Ar plasma jet treatment, which are produced by the decomposition of surface organic contaminants during the cleaning process.