期刊文献+
共找到10,296篇文章
< 1 2 250 >
每页显示 20 50 100
Simulation of a Persistent Snow Storm over Southern China with a Regional Atmosphere-Ocean Coupled Model 被引量:3
1
作者 廖治杰 张耀存 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2013年第2期425-447,共23页
A regional atmosphere-ocean coupled model, RegCM3-POM, was developed by coupling the regional climate model (RegCM3) with the Princeton Ocean Model (POM). The performance of RegCM3-POM in simulating a persistent s... A regional atmosphere-ocean coupled model, RegCM3-POM, was developed by coupling the regional climate model (RegCM3) with the Princeton Ocean Model (POM). The performance of RegCM3-POM in simulating a persistent snow storm over southern China and the impact of the Madden Julian oscillation (MJO) on this persistent snow storm were investigated. Compared with the stand-alone RegCM3, the coupled model performed better at reproducing the spatial-temporal evolution and intensity of the precipitation episodes. The power spectral analysis indicated that the coupled model successfully captured the dominant period between 30 and 60 days in the precipitation field, leading to a notable improvement in simulating the magnitude of intraseasonal precipitation variation, and further in enhancing the intensity of the simulated precipitation. These improvements were mainly due to the well-simulated low-frequency oscillation center and its eastward propagation characteristics in each MJO phase by RegCM3-POM, which improved the simulations of MJO-related low-frequency vertical motions, water vapor transport, and the deep inversion layer that can directly influence the precipitation event and that further improved the simulated MJOprecipitation relationship. Analysis of the phase relationship between convection and SST indicated that RegCM3-POM exhibits a near-quadrature relation between the simulated convection and SST anomalies, which was consistent with the observations. However, such a near-quadrature relation was not as significant when the stand-alone RegCM3 was used. This difference indicated that the inherent coupled feedback process between the ocean and atmosphere in RegCM3-POM played an important part in reproducing the features of the MJO that accompanied the snow storm. 展开更多
关键词 REGCM3 POM coupled model snow storm Madden Julian oscillation
下载PDF
Coupled multiphysical model for investigation of influence factors in the application of microbially induced calcite precipitation 被引量:1
2
作者 Xuerui Wang Pavan Kumar Bhukya +1 位作者 Dali Naidu Arnepalli Shuang Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2232-2249,共18页
The study presents a comprehensive coupled thermo-bio-chemo-hydraulic(T-BCH)modeling framework for stabilizing soils using microbially induced calcite precipitation(MICP).The numerical model considers relevant multiph... The study presents a comprehensive coupled thermo-bio-chemo-hydraulic(T-BCH)modeling framework for stabilizing soils using microbially induced calcite precipitation(MICP).The numerical model considers relevant multiphysics involved in MICP,such as bacterial ureolytic activities,biochemical reactions,multiphase and multicomponent transport,and alteration of the porosity and permeability.The model incorporates multiphysical coupling effects through well-established constitutive relations that connect parameters and variables from different physical fields.It was implemented in the open-source finite element code OpenGeoSys(OGS),and a semi-staggered solution strategy was designed to solve the couplings,allowing for flexible model settings.Therefore,the developed model can be easily adapted to simulate MICP applications in different scenarios.The numerical model was employed to analyze the effect of various factors,including temperature,injection strategies,and application scales.Besides,a TBCH modeling study was conducted on the laboratory-scale domain to analyze the effects of temperature on urease activity and precipitated calcium carbonate.To understand the scale dependency of MICP treatment,a large-scale heterogeneous domain was subjected to variable biochemical injection strategies.The simulations conducted at the field-scale guided the selection of an injection strategy to achieve the desired type and amount of precipitation.Additionally,the study emphasized the potential of numerical models as reliable tools for optimizing future developments in field-scale MICP treatment.The present study demonstrates the potential of this numerical framework for designing and optimizing the MICP applications in laboratory-,prototype-,and field-scale scenarios. 展开更多
关键词 MULTIPHYSICS Microbially induced calcite precipitation(MICP) coupled thermo-bio-chemo-hydraulic(TBCH) model OpenGeoSys(OGS) Influence factors
下载PDF
Contrasts of bimodal tropical instability waves(TIWs)-induced wind stress perturbations in the Pacific Ocean among observations,ocean models,and coupled climate models
3
作者 Kai MA Chuanyu LIU +1 位作者 Junli XU Fan WANG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第1期1-23,共23页
The coupling between wind stress perturbations and sea surface temperature(SST)perturbations induced by tropical instability waves(TIWs)in the Pacific Ocean has been revealed previously and proven crucial to both the ... The coupling between wind stress perturbations and sea surface temperature(SST)perturbations induced by tropical instability waves(TIWs)in the Pacific Ocean has been revealed previously and proven crucial to both the atmosphere and ocean.However,an overlooked fact by previous studies is that the loosely defined“TIWs”actually consist of two modes,including the Yanai wave-based TIW on the equator(hereafter eTIW)and the Rossby wave-based TIW off the equator(hereafter vTIW).Hence,the individual feedbacks of the wind stress to the bimodal TIWs remain unexplored.In this study,individual coupling relationships are established for both eTIW and v TIW,including the relationship between the TIW-induced SST perturbations and two components of wind stress perturbations,and the relationship between the TIW-induced wind stress perturbation divergence(curl)and the downwind(crosswind)TIW-induced SST gradients.Results show that,due to different distributions of eTIW and vTIW,the coupling strength induced by the eTIW is stronger on the equator,and that by the vTIW is stronger off the equator.The results of any of eTIW and vTIW are higher than those of the loosely defined TIWs.We further investigated how well the coupling relationships remained in several widely recognized oceanic general circulation models and fully coupled climate models.However,the coupling relationships cannot be well represented in most numerical models.Finally,we confirmed that higher resolution usually corresponds to more accurate simulation.Therefore,the coupling models established in this study are complementary to previous research and can be used to refine the oceanic and coupled climate models. 展开更多
关键词 bimodal tropical instability waves mesoscale air-sea interaction coupled models Yanai wave
下载PDF
An internal ballistic model of electromagnetic railgun based on PFN coupled with multi-physical field and experimental validation
4
作者 Benfeng Gu Haiyuan Li Baoming Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期254-261,共8页
To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dime... To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dimensional numerical model of the augmented railgun with four parallel unconventional rails is introduced to simulate the internal ballistic process and realize the multi-physics field coupling calculation of the rail gun,and a test experiment of a medium-caliber electromagnetic launcher powered by pulse formation network(PFN)is carried out.Various test methods such as spectrometer,fiber grating and high-speed camera are used to test several parameters such as muzzle initial velocity,transient magnetic field strength and stress-strain of rail.Combining the simulation results and experimental data,the damage condition of the contact surface is analyzed. 展开更多
关键词 Internal ballistic modeling Electromagnetic rail gun Multi-physics field coupling Experimental validation PFN
下载PDF
Multi-scenario Simulation and Spatial-temporal Analysis of LUCC in China's Coastal Zone Based on Coupled SD-FLUS Model
5
作者 HOU Xiyong SONG Baiyuan +2 位作者 ZHANG Xueying WANG Xiaoli LI Dong 《Chinese Geographical Science》 SCIE CSCD 2024年第4期579-598,共20页
Increased human activities in China's coastal zone have resulted in the depletion of ecological land resources.Thus,conducting current and future multi-scenario simulation research on land use and land cover chang... Increased human activities in China's coastal zone have resulted in the depletion of ecological land resources.Thus,conducting current and future multi-scenario simulation research on land use and land cover change(LUCC)is crucial for guiding the healthy and sustainable development of coastal zones.System dynamic(SD)-future land use simulation(FLUS)model,a coupled simulation model,was developed to analyze land use dynamics in China's coastal zone.This model encompasses five scenarios,namely,SSP1-RCP2.6(A),SSP2-RCP4.5(B),SSP3-RCP4.5(C),SSP4-RCP4.5(D),and SSP5-RCP8.5(E).The SD model simulates land use demand on an annual basis up to the year 2100.Subsequently,the FLUS model determines the spatial distribution of land use for the near term(2035),medium term(2050),and long term(2100).Results reveal a slowing trend in land use changes in China's coastal zone from 2000–2020.Among these changes,the expansion rate of construction land was the highest and exhibited an annual decrease.By 2100,land use predictions exhibit high accuracy,and notable differences are observed in trends across scenarios.In summary,the expansion of production,living,and ecological spaces toward the sea remains prominent.Scenario A emphasizes reduced land resource dependence,benefiting ecological land protection.Scenario B witnesses an intensified expansion of artificial wetlands.Scenario C sees substantial land needs for living and production,while Scenario D shows coastal forest and grassland shrinkage.Lastly,in Scenario E,the conflict between humans and land intensifies.This study presents pertinent recommendations for the future development,utilization,and management of coastal areas in China.The research contributes valuable scientific support for informed,long-term strategic decision making within coastal regions. 展开更多
关键词 land use and land cover change(LUCC) multi-scenario simulation system dynamic-future land use simulation(SD-FLUS)model SSP-RCP scenarios model coupling China's coastal zone
下载PDF
Different El Niño Flavors and Associated Atmospheric Teleconnections as Simulated in a Hybrid Coupled Model
6
作者 Junya HU Hongna WANG +1 位作者 Chuan GAO Rong-Hua ZHANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第5期864-880,共17页
A previously developed hybrid coupled model(HCM)is composed of an intermediate tropical Pacific Ocean model and a global atmospheric general circulation model(AGCM),denoted as HCMAGCM.In this study,different El Ni... A previously developed hybrid coupled model(HCM)is composed of an intermediate tropical Pacific Ocean model and a global atmospheric general circulation model(AGCM),denoted as HCMAGCM.In this study,different El Niño flavors,namely the Eastern-Pacific(EP)and Central-Pacific(CP)types,and the associated global atmospheric teleconnections are examined in a 1000-yr control simulation of the HCMAGCM.The HCMAGCM indicates profoundly different characteristics among EP and CP El Niño events in terms of related oceanic and atmospheric variables in the tropical Pacific,including the amplitude and spatial patterns of sea surface temperature(SST),zonal wind stress,and precipitation anomalies.An SST budget analysis indicates that the thermocline feedback and zonal advective feedback dominantly contribute to the growth of EP and CP El Niño events,respectively.Corresponding to the shifts in the tropical rainfall and deep convection during EP and CP El Niño events,the model also reproduces the differences in the extratropical atmospheric responses during the boreal winter.In particular,the EP El Niño tends to be dominant in exciting a poleward wave train pattern to the Northern Hemisphere,while the CP El Niño tends to preferably produce a wave train similar to the Pacific North American(PNA)pattern.As a result,different climatic impacts exist in North American regions,with a warm-north and cold-south pattern during an EP El Niño and a warm-northeast and cold-southwest pattern during a CP El Niño,respectively.This modeling result highlights the importance of internal natural processes within the tropical Pacific as they relate to the genesis of ENSO diversity because the active ocean–atmosphere coupling is allowed only in the tropical Pacific within the framework of the HCMAGCM. 展开更多
关键词 hybrid coupled model tropical Pacific Ocean global atmosphere Eastern/Central-Pacific El Niño atmospheric teleconnections
下载PDF
Hydrologic Response to Future Climate Change in the Dulong-Irra-waddy River Basin Based on Coupled Model Intercomparison Project 6
7
作者 XU Ziyue MA Kai +1 位作者 YUAN Xu HE Daming 《Chinese Geographical Science》 SCIE CSCD 2024年第2期294-310,共17页
Within the context of the Belt and Road Initiative(BRI)and the China-Myanmar Economic Corridor(CMEC),the Dulong-Ir-rawaddy(Ayeyarwady)River,an international river among China,India and Myanmar,plays a significant role... Within the context of the Belt and Road Initiative(BRI)and the China-Myanmar Economic Corridor(CMEC),the Dulong-Ir-rawaddy(Ayeyarwady)River,an international river among China,India and Myanmar,plays a significant role as both a valuable hydro-power resource and an essential ecological passageway.However,the water resources and security exhibit a high degree of vulnerabil-ity to climate change impacts.This research evaluates climate impacts on the hydrology of the Dulong-Irrawaddy River Basin(DIRB)by using a physical-based hydrologic model.We crafted future climate scenarios using the three latest global climate models(GCMs)from Coupled Model Intercomparison Project 6(CMIP6)under two shared socioeconomic pathways(SSP2-4.5 and SSP5-8.5)for the near(2025-2049),mid(2050-2074),and far future(2075-2099).The regional model using MIKE SHE based on historical hydrologic processes was developed to further project future streamflow,demonstrating reliable performance in streamflow simulations with a val-idation Nash-Sutcliffe Efficiency(NSE)of 0.72.Results showed that climate change projections showed increases in the annual precip-itation and potential evapotranspiration(PET),with precipitation increasing by 11.3%and 26.1%,and PET increasing by 3.2%and 4.9%,respectively,by the end of the century under SSP2-4.5 and SSP5-8.5.These changes are projected to result in increased annual streamflow at all stations,notably at the basin’s outlet(Pyay station)compared to the baseline period(with an increase of 16.1%and 37.0%at the end of the 21st century under SSP2-4.5 and SSP5-8.5,respectively).Seasonal analysis for Pyay station forecasts an in-crease in dry-season streamflow by 31.3%-48.9%and 22.5%-76.3%under SSP2-4.5 and SSP5-8.5,respectively,and an increase in wet-season streamflow by 5.8%-12.6%and 2.8%-33.3%,respectively.Moreover,the magnitude and frequency of flood events are pre-dicted to escalate,potentially impacting hydropower production and food security significantly.This research outlines the hydrological response to future climate change during the 21st century and offers a scientific basis for the water resource management strategies by decision-makers. 展开更多
关键词 climate change hydrologic response coupled model Intercomparison Project 6(CMIP6) MIKE SHE(Système Hydrologique Europeén) Dulong-Irrawaddy River Basin
下载PDF
Pore-pressure and stress-coupled creep behavior in deep coal:Insights from real-time NMR analysis
8
作者 Wenhao Jia Hongwei Zhou +3 位作者 Senlin Xie Yimeng Wang Xinfeng Hu Lei Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第1期77-90,共14页
Understanding the variations in microscopic pore-fracture structures(MPFS) during coal creep under pore pressure and stress coupling is crucial for coal mining and effective gas treatment. In this manuscript, a triaxi... Understanding the variations in microscopic pore-fracture structures(MPFS) during coal creep under pore pressure and stress coupling is crucial for coal mining and effective gas treatment. In this manuscript, a triaxial creep test on deep coal at various pore pressures using a test system that combines in-situ mechanical loading with real-time nuclear magnetic resonance(NMR) detection was conducted.Full-scale quantitative characterization, online real-time detection, and visualization of MPFS during coal creep influenced by pore pressure and stress coupling were performed using NMR and NMR imaging(NMRI) techniques. The results revealed that seepage pores and microfractures(SPM) undergo the most significant changes during coal creep, with creep failure gradually expanding from dense primary pore fractures. Pore pressure presence promotes MPFS development primarily by inhibiting SPM compression and encouraging adsorption pores(AP) to evolve into SPM. Coal enters the accelerated creep stage earlier at lower stress levels, resulting in more pronounced creep deformation. The connection between the micro and macro values was established, demonstrating that increased porosity at different pore pressures leads to a negative exponential decay of the viscosity coefficient. The Newton dashpot in the ideal viscoplastic body and the Burgers model was improved using NMR experimental results, and a creep model that considers pore pressure and stress coupling using variable-order fractional operators was developed. The model’s reasonableness was confirmed using creep experimental data. The damagestate adjustment factors ω and β were identified through a parameter sensitivity analysis to characterize the effect of pore pressure and stress coupling on the creep damage characteristics(size and degree of difficulty) of coal. 展开更多
关键词 Real-time monitoring Pore pressure-stress coupling Microscopic pore-fracture structure Variable-order fractional creep model Deep coal
下载PDF
Degree of Freedom Analysis for Holographic MIMO Based on a Mutual-Coupling-Compliant Channel Model
9
作者 SUN Yunqi JIAN Mengnan +2 位作者 YANG Jun ZHAO Yajun CHEN Yijian 《ZTE Communications》 2024年第1期34-40,共7页
Degree of freedom(DOF)is a key indicator for spatial multiplexing layers of a wireless channel.Traditionally,the channel of a multiple-input multiple-output(MIMO)half-wavelength dipole array has a DOF that equals the ... Degree of freedom(DOF)is a key indicator for spatial multiplexing layers of a wireless channel.Traditionally,the channel of a multiple-input multiple-output(MIMO)half-wavelength dipole array has a DOF that equals the antenna number.However,recent studies suggest that the DOF could be less than the antenna number when strong mutual coupling is considered.We utilize a mutual-coupling-compliant channel model to investigate the DOF of the holographic MIMO(HMIMO)channel and give a upper bound of the DOF with strong mutual coupling.Our numerical simulations demonstrate that a dense array can support more DOF per unit aperture as compared with a half-wavelength MIMO system. 展开更多
关键词 channel model degree of freedom holographic MIMO mutual coupling
下载PDF
Impact of Perturbation Schemes on the Ensemble Prediction in a Coupled Lorenz Model 被引量:1
10
作者 Qian ZOU Quanjia ZHONG +4 位作者 Jiangyu MAO Ruiqiang DING Deyu LU Jianping LI Xuan LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第3期501-513,共13页
Based on a simple coupled Lorenz model,we investigate how to assess a suitable initial perturbation scheme for ensemble forecasting in a multiscale system involving slow dynamics and fast dynamics.Four initial perturb... Based on a simple coupled Lorenz model,we investigate how to assess a suitable initial perturbation scheme for ensemble forecasting in a multiscale system involving slow dynamics and fast dynamics.Four initial perturbation approaches are used in the ensemble forecasting experiments:the random perturbation(RP),the bred vector(BV),the ensemble transform Kalman filter(ETKF),and the nonlinear local Lyapunov vector(NLLV)methods.Results show that,regardless of the method used,the ensemble averages behave indistinguishably from the control forecasts during the first few time steps.Due to different error growth in different time-scale systems,the ensemble averages perform better than the control forecast after very short lead times in a fast subsystem but after a relatively long period of time in a slow subsystem.Due to the coupled dynamic processes,the addition of perturbations to fast variables or to slow variables can contribute to an improvement in the forecasting skill for fast variables and slow variables.Regarding the initial perturbation approaches,the NLLVs show higher forecasting skill than the BVs or RPs overall.The NLLVs and ETKFs had nearly equivalent prediction skill,but NLLVs performed best by a narrow margin.In particular,when adding perturbations to slow variables,the independent perturbations(NLLVs and ETKFs)perform much better in ensemble prediction.These results are simply implied in a real coupled air–sea model.For the prediction of oceanic variables,using independent perturbations(NLLVs)and adding perturbations to oceanic variables are expected to result in better performance in the ensemble prediction. 展开更多
关键词 ensemble prediction nonlinear local Lyapunov vector(NLLV) ensemble transform Kalman filter(ETKF) coupled air-sea models
下载PDF
Mitigation of Transients in Capacitor Coupled Substations Using Traditional RLC Filter Techniques
11
作者 Sinqobile Wiseman Nene Bolanle Tolulope Abe Agha Francis Nnachi 《Journal of Power and Energy Engineering》 2024年第5期60-75,共16页
This article presents an extensive examination and modeling of Capacitor Coupled Substations (CCS), noting some of their inherent constraints. The underlying implementation of a CCS is to supply electricity directly f... This article presents an extensive examination and modeling of Capacitor Coupled Substations (CCS), noting some of their inherent constraints. The underlying implementation of a CCS is to supply electricity directly from high-voltage (HV) transmission lines to low-voltage (LV) consumers through coupling capacitors and is said to be cost-effective as compared to conventional distribution networks. However, the functionality of such substations is susceptible to various transient phenomena, including ferroresonance and overvoltage occurrences. To address these challenges, the study uses simulations to evaluate the effectiveness of conventional resistor-inductor-capacitor (RLC) filter in mitigating hazardous overvoltage resulting from transients. The proposed methodology entails using standard RLC filter to suppress transients and its associated overvoltage risks. Through a series of MATLAB/Simulink simulations, the research emphasizes the practical effectiveness of this technique. The study examines the impact of transients under varied operational scenarios, including no-load switching conditions, temporary short-circuits, and load on/off events. The primary aim of the article is to assess the viability of using an established technology to manage system instabilities upon the energization of a CCS under no-load circumstances or in case of a short-circuit fault occurring on the primary side of the CCS distribution transformer. The findings underscore the effectiveness of conventional RLC filters in suppressing transients induced by the CCS no-load switching. 展开更多
关键词 Capacitor coupled Substation System modeling FERRORESONANCE RLC filters Power Electronics Transients Capacitor Voltage Transformers Transmission Lines
下载PDF
Research on the Coupled and Coordinated Development of Tourism and Transport in Chengdu City
12
作者 Min Kang Qiguang Lv 《Proceedings of Business and Economic Studies》 2024年第3期6-15,共10页
Based on a total of 16 indicators selected from the tourism and transport industries,an evaluation index system of the coupling and coordination development level of tourism and transport is constructed.The entropy va... Based on a total of 16 indicators selected from the tourism and transport industries,an evaluation index system of the coupling and coordination development level of tourism and transport is constructed.The entropy value method and the coupling coordination degree model are used to conduct an empirical study on the development level and coupling coordination level of the transport and tourism industries in Chengdu City from 2011 to 2020.The results show that,on the whole,the coupling coordination degree of transport and tourism in Chengdu is poor and has been in a state of mild to moderate dysfunction.The development level of tourism lagged behind the development of transport from 2011 to 2012,and the two were in a state of mild dysfunction.However,from 2013 onwards,the development level of tourism was prioritized over the development level of transport.This shift caused the coupling coordination degree of the two industries to decline sharply to 0.23305 in 2013.The development level of the tourism industry increased again,reaching 0.34206 in 2019,which marked an improvement.Consequently,the coordination degree of the transport and tourism industries evolved from moderate dislocation to mild dislocation.Finally,the results of the empirical research are analyzed,and corresponding suggestions are put forward to promote the sustainable growth of the transport and tourism industries in Chengdu City.These suggestions aim to improve the coupled and coordinated development level of the two industries. 展开更多
关键词 coupling coordination Chengdu city Transport industry Tourism industry Entropy value method coupling coordination degree model
下载PDF
Assessment of earthquake-induced landslide hazard zoning using the physics-environmental coupled Model
13
作者 ZENG Ying ZHANG Ying-bin +4 位作者 LIU Jing XU Pei-yi ZHU Hui YU Hai-hong HE Yun-yong 《Journal of Mountain Science》 SCIE CSCD 2023年第9期2644-2664,共21页
In order to prevent and mitigate disasters,it is crucial to immediately and properly assess the spatial distribution of landslide hazards in the earthquake-affected area.Currently,there are primarily two categories of... In order to prevent and mitigate disasters,it is crucial to immediately and properly assess the spatial distribution of landslide hazards in the earthquake-affected area.Currently,there are primarily two categories of assessment techniques:the physical mechanism-based method(PMBM),which considers the landslide dynamics and has the advantages of effectiveness and proactivity;the environmental factor-based method(EFBM),which integrates the environmental conditions and has high accuracy.In order to obtain the spatial distribution of landslide hazards in the affected area with near realtime and high accuracy,this study proposed to combine the PMBM based on Newmark method with EFBM to form Newmark-Information value model(N-IV),Newmark-Logic regression model(N-LR)and Newmark-Support Vector Machine model(N-SVM)for seismic landslide hazard assessment on the Ludian Mw 6.2 earthquake in Yunnan.The predicted spatial hazard distribution was compared with the actual cataloged landslide inventory,and frequency ratio(FR),and area under the curve(AUC)metrics were used to verify the model's plausibility,performance,and accuracy.According to the findings,the model's accuracy is ranked as follows:N-SVM>N-LR>N-IV>Newmark.With an AUC value of 0.937,the linked N-SVM was discovered to have the best performance.The research results indicate that the physics-environmental coupled model(PECM)exhibits accuracy gains of 46.406%(N-SVM),30.625%(N-LR),and 22.816%(N-IV)when compared to the conventional Newmark technique.It shows varied degrees of improvement from 2.577%to 12.446%when compared to the single EFBM.The study also uses the Ms 6.8 Luding earthquake to evaluate the model,showcasing its trustworthy in forecasting power and steady generalization.Since the suggested PECM in this study can adapt to complicated earthquake-induced landslides situations,it aims to serve as a reference for future research in a similar field,as well as to help with emergency planning and response in earthquakeprone regions with landslides. 展开更多
关键词 Earthquake-induced landslides Newmark method coupled model Ludian earthquake Landslide distribution
下载PDF
Impacts of Surface Exchange Coefficients on Simulations of Super Typhoon Megi(2010)Using a Coupled Ocean-Atmosphere-Wave Model
14
作者 ZHANG Wenqing ZHANG Jialin +1 位作者 GUAN Changlong SUN Jian 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第3期587-600,共14页
In this study,the effects of surface exchange coefficients on simulations of Super Typhoon Megi(2010)are investigated using a fully coupled ocean-atmosphere-wave model.Several experiments are conducted using different... In this study,the effects of surface exchange coefficients on simulations of Super Typhoon Megi(2010)are investigated using a fully coupled ocean-atmosphere-wave model.Several experiments are conducted using different parameterization schemes for the drag(C_(D))and enthalpy exchange(C_(K))coefficients.For the selected case,considering only the leveling-off of C_(D)at high wind speeds does not effectively improve the simulated typhoon track,intensity,or size.We found that increasing C_(K)monotonically with wind speed(Komori et al.,2018)yields stronger winds and deeper pressures by enhancing latent and sensible heat fluxes,but typhoon intensity remains underestimated.We propose a new higher C_(K)than that from Komori et al.(2018)based on the theory of Emanuel(1995).This approach produces a greater modeled typhoon intensity that is in good agreement with the best track data and effectively improves the track error for the simulation.Improved accuracy for modeled typhoon intensity is achieved with the new coefficient because C_(K)/C_(D)reaches the threshold of about 0.75 predicted by Emanuel(1995).The new proposed C_(K)also results in a reasonably accurate modeled sea surface temperature.However,typhoon size and surface wave height are overestimated.This finding implies that more numerical tests for tropical cyclones of different nature(such as strong,weak,dissipating,rapidly intensifying,or weakening tropical cyclones)should be studied,and more physical processes should be explored in future coupled models. 展开更多
关键词 TYPHOON drag coefficient enthalpy exchange coefficient coupled ocean-atmosphere-wave model
下载PDF
Numerical simulations and comparative analysis for two types of storm surges in the Bohai Sea using a coupled atmosphere-ocean model 被引量:8
15
作者 Yong Li Xin Chen +2 位作者 Xingyu Jiang Jianfen Li Lizhu Tian 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2019年第9期35-47,共13页
The Bohai Sea is extremely susceptible to storm surges induced by extratropical storms and tropical cyclones in nearly every season. In order to relieve the impacts of storm surge disasters on structures and human liv... The Bohai Sea is extremely susceptible to storm surges induced by extratropical storms and tropical cyclones in nearly every season. In order to relieve the impacts of storm surge disasters on structures and human lives in coastal regions, it is very important to understand the occurring of the severe storm surges. The previous research is mostly restricted to a single type of storm surge caused by extratropical storm or tropical cyclone. In present paper, a coupled atmosphere-ocean model is developed to study the storm surges induced by two types of extreme weather conditions. Two special cases happened in the Bohai Sea are simulated successively. The wind intensity and minimum sea-level pressure derived from the Weather Research and Forecasting (WRF) model agree well with the observed data. The computed time series of water level obtained from the Regional Ocean Modeling System (ROMS) also are in good agreement with the tide gauge observations. The structures of the wind fields and average currents for two types of storm surges are analyzed and compared. The results of coupled model are compared with those from the uncoupled model. The case studies indicate that the wind field and structure of the ocean surface current have great differences between extratropical storm surge and typhoon storm surge. The magnitude of storm surge in the Bohai Sea is shown mainly determined by the ocean surface driving force, but greatly affected by the coastal geometry and bathymetry. 展开更多
关键词 the Bohai Sea extratropical STORM SURGE typhoon STORM SURGE coupled atmosphere-ocean model WRF ROMS
下载PDF
The Interannual Variability of East Asian Monsoon and Its Relationship with SST in a Coupled Atmosphere-Ocean-Land Climate Model 被引量:33
16
作者 王会军 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2000年第1期31-47,共17页
Based on a 200 year simulation and reanalysis data (1980–1996), the general characteristics of East Asian monsoon (EAM) were analyzed in the first part of the paper. It is clear from this re-search that the South Asi... Based on a 200 year simulation and reanalysis data (1980–1996), the general characteristics of East Asian monsoon (EAM) were analyzed in the first part of the paper. It is clear from this re-search that the South Asian monsoon (SAM) defined by Webster and Yang (1992) is geographically and dynamically different from the East Asian monsoon (EAM). The region of the monsoon defined by Webster and Yang (1992) is located in the tropical region of Asia (40–110°E, 10–20°N), including the Indian monsoon and the Southeast Asian monsoon, while the EAM de-fined in this paper is located in the subtropical region of East Asia (110–125°E, 20–40°N). The components and the seasonal variations of the SAM and EAM are different and they characterize the tropical and subtropical Asian monsoon systems respectively. A suitable index (EAMI) for East Asian monsoon was then defined to describe the strength of EAM in this paper. In the second part of the paper, the interannual variability of EAM and its relationship with sea surface temperature (SST) in the 200 year simulation were studied by using the composite method, wavelet transformation, and the moving correlation coefficient method. The summer EAMI is negatively correlated with ENSO (El Nino and Southern Oscillation) cycle represented by the NINO3 sea surface temperature anomaly (SSTA) in the preceding April and January, while the winter EAM is closely correlated with the succeeding spring SST over the Pacific in the coupled model. The general differences of EAM between El Nino and La Nina cases were studied in the model through composite analysis. It was also revealed that the dominating time scales of EAM variability may change in the long-term variation and the strength may also change. The anoma-lous winter EAM may have some correlation with the succeeding summer EAM, but this relation-ship may disappear sometimes in the long-term climate variation. Such time-dependence was found in the relationship between EAM and SST in the long-term climate simulation as well. Key words East Asian monsoon - Interannual variability - Coupled climate model The author wishes to thank Profs. Wu G.X., Zhang X.H., and Dr. Yu Y.Q. for providing the coupled model re-sults. Dr. Yu also kindly provided assistance in using the model output. This work was supported jointly by the Na-tional Natural Science Foundation of China key project ’ The analysis on the seasonal-to-interannual variation of the general circulation’ under contract 49735160 and Chinese Academy of Sciences key project ’ The Interannual Va-riability and Predictability of East Asian Monsoon’. 展开更多
关键词 East Asian monsoon Interannual variability coupled climate model
下载PDF
Framework of Distributed Coupled Atmosphere-Ocean-Wave Modeling System 被引量:3
17
作者 文元桥 黄立文 +3 位作者 邓健 张进峰 王思思 王立军 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2006年第3期442-448,共7页
In order to research the interactions between the atmosphere and ocean as well as their important role in the intensive weather systems of coastal areas, and to improve the forecasting ability of the hazardous weather... In order to research the interactions between the atmosphere and ocean as well as their important role in the intensive weather systems of coastal areas, and to improve the forecasting ability of the hazardous weather processes of coastal areas, a coupled atmosphere-ocean-wave modeling system has been developed. The agent-based environment framework for linking models allows flexible and dynamic information exchange between models. For the purpose of flexibility, portability and scalability, the framework of the whole system takes a multi-layer architecture that includes a user interface layer, computational layer and service-enabling layer. The numerical experiment presented in this paper demonstrates the performance of the distributed coupled modeling system. 展开更多
关键词 system framework mesoscale models distributed coupled modeling
下载PDF
A Numerical Study of a TOGA-COARE Squall-Line Using a Coupled Mesoscale Atmosphere-Ocean Model 被引量:1
18
作者 Sethu RAMAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2004年第5期708-716,共9页
An atmosphere-ocean coupled mesoscale modeling system is developed and used to investigate the interactions between a squall line and the upper ocean observed over the western Paci?c warm pool during the Tropical Oc... An atmosphere-ocean coupled mesoscale modeling system is developed and used to investigate the interactions between a squall line and the upper ocean observed over the western Paci?c warm pool during the Tropical Ocean/Global Atmosphere Coupled Ocean and Atmosphere Response Experiment (TOGA-COARE). The modeling system is developed by coupling the Advanced Regional Prediction Sys- tem (ARPS) to the Princeton Ocean Model (POM) through precipitation and two-way exchanges of mo- mentum, heat, and moisture across the air-sea interface. The results indicate that the interaction between the squall-line and the upper ocean produced noticeable di?erences in the sensible and latent heat ?uxes, as compared to the uncoupled cases. Precipitation, which is often ignored in air-sea heat ?ux estimates, played a major role in the coupling between the mesoscale convective system and the ocean. Precipitation a?ected the air-sea interaction through both freshwater ?ux and sensible heat ?ux. The former led to the formation of a thin stable ocean layer underneath and behind the precipitating atmospheric convection. The presence of this stable layer resulted in a more signi?cant convection-induced sea surface temperature (SST) change in and behind the precipitation zone. However, convection-induced SST changes do not seem to play an important role in the intsensi?cation of the existing convective system that resulted in the SST change, as the convection quickly moved away from the region of original SST response. 展开更多
关键词 air-sea interaction mesoscale modeling squall line coupled ocean-atmosphere modeling
下载PDF
APPLIED STUDY ON ATMOSPHERE-OCEAN-WAVE COUPLED MODEL IN SOUTH CHINA SEA
19
作者 关皓 周林 +1 位作者 薛彦广 张阳 《Journal of Tropical Meteorology》 SCIE 2013年第4期367-374,共8页
Based on MM5,POM,and WW3,a regional atmosphere-ocean-wave coupled system is developed in this work under the environment of Message Passing Interface.The coupled system is applied in a study of two typhoon processes i... Based on MM5,POM,and WW3,a regional atmosphere-ocean-wave coupled system is developed in this work under the environment of Message Passing Interface.The coupled system is applied in a study of two typhoon processes in the South China Sea(SCS).The results show that the coupled model operates steadily and efficiently and exhibits good capability in simulating typhoon processes.It improves the simulation accuracy of the track and intensity of the typhoon.The response of ocean surface to the typhoon is remarkable,especially on the right side of the typhoon track.The sea surface temperature(SST)declines,and the ocean current and wave height are intensified.In the coupling experiment,the decline of SST intensifies and the inertial oscillation amplitude of the ocean current increases when the ocean-wave effect is considered.Therefore,the atmosphere-ocean-wave coupled system can help in the study of air-sea interaction and improve the capability of predicting and preventing weather and oceanic disasters in SCS. 展开更多
关键词 atmosphere-ocean-wave coupled model numerical simulation STUDY typhoon feedback of ocean ocean-wave effect
下载PDF
The ‘Two oceans and one sea' extended range numerical prediction system with an ultra-high resolution atmosphere-ocean-land regional coupled model 被引量:2
20
作者 Zhang Shao-Qing Yang LIU +4 位作者 Ma Xiao-Hui Wang Hong-Na Zhang Xue-Feng Yu Xiao-Lin Lu Lv 《Atmospheric and Oceanic Science Letters》 CSCD 2018年第4期364-371,共8页
‘两洋一海’区域是‘21世纪海上丝绸之路’的重要空间载体,也是国防安全的核心战略海区。随着社会需求加剧,介于常规短期和气候尺度之间的延伸期(10–30天)预测的重要性逐渐突显。受限于海洋短期预报不含大气海洋快慢过程转化的信息存... ‘两洋一海’区域是‘21世纪海上丝绸之路’的重要空间载体,也是国防安全的核心战略海区。随着社会需求加剧,介于常规短期和气候尺度之间的延伸期(10–30天)预测的重要性逐渐突显。受限于海洋短期预报不含大气海洋快慢过程转化的信息存储机制、大气高频变化制约预报时效、全球气候预报分辨率较低、气陆海多圈层耦合机制理解不足及区域预报无较好初始化等问题,我国海洋延伸期预测工作仍是盲点,导致对一些海洋过程、灾害事件无法做出模拟及预警。本文将介绍基于区域超高分辨率多圈层耦合模型的两洋一海区域延伸期数值预测系统研制情况,包括研究内容,技术方案,创新和预期成果等。 展开更多
关键词 数值预报系统 超高分辨率 多圈层耦合模型 延伸期期预报
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部