Hyperspectral images have wide applications in the fields of geology,mineral exploration,agriculture,forestry and environmental studies etc.due to their narrow band width with numerous channels.However,these images co...Hyperspectral images have wide applications in the fields of geology,mineral exploration,agriculture,forestry and environmental studies etc.due to their narrow band width with numerous channels.However,these images commonly suffer from atmospheric effects,thereby limiting their use.In such a situation,atmospheric correction becomes a necessary pre-requisite for any further processing and accurate interpretation of spectra of different surface materials/objects.In the present study,two very advance atmospheric approaches i.e.QUAC and FLAASH have been applied on the hyperspectral remote sensing imagery.The spectra of vegetation,man-made structure and different minerals from the Gadag area of Karnataka,were extracted from the raw image and also from the QUAC and FLAASH corrected images.These spectra were compared among themselves and also with the existing USGS and JHU spectral library.FLAASH is rigorous atmospheric algorithm and requires various parameters to perform but it has capability to compensate the effects of atmospheric absorption.These absorption curves in any spectra play an important role in identification of the compositions.Therefore,the presence of unwanted absorption features can lead to wrong interpretation and identification of mineral composition.FLAASH also has an advantage of spectral polishing which provides smooth spectral curves which helps in accurate identification of composition of minerals.Therefore,this study recommends that FLAASH is better than QUAC for atmospheric correction and correct interpretation and identification of composition of any object or minerals.展开更多
高光谱遥感影像由于集中了高光谱分辨率和高空间分辨率的优点,在对地观测中具有不可替代的优势。实际应用当中,往往需要从遥感影像获取地物的地表反射率信息,这就要求首先从影像中去除大气的影响,即进行大气纠正及补偿。目前,对遥感影...高光谱遥感影像由于集中了高光谱分辨率和高空间分辨率的优点,在对地观测中具有不可替代的优势。实际应用当中,往往需要从遥感影像获取地物的地表反射率信息,这就要求首先从影像中去除大气的影响,即进行大气纠正及补偿。目前,对遥感影像进行大气纠正的算法有很多,详细介绍了基于遥感影像自身信息的大气纠正模块FLAA SH(Fast L ine of S ight A tm ospheric A nalysisof SpectralHypercubes)所涉及的算法,并利用该模块对AV IR IS航空遥感影像进行了大气纠正,对不同的结果进行了分析对比,从而对该算法进行了初步的评价。展开更多
利用FLAASH和ATCOR2模型对漓江流域的Landsat ETM+数据进行大气校正,以GLS(Global Land Survey)获得的同步高质量地表反射率影像作为参考数据,从目视效果、典型地物光谱特征和波谱一致性三方面对两种模型的校正结果进行对比分析。研究表...利用FLAASH和ATCOR2模型对漓江流域的Landsat ETM+数据进行大气校正,以GLS(Global Land Survey)获得的同步高质量地表反射率影像作为参考数据,从目视效果、典型地物光谱特征和波谱一致性三方面对两种模型的校正结果进行对比分析。研究表明,两种模型均可以对ETM+影像进行有效的大气校正,FLAASH模型的校正精度优于ATCOR2模型。展开更多
由于受到大气的影响,传感器接收到的辐射信息不能真实地反映地表反射光谱信息,因此,从遥感影像中去除大气的影响,即进行大气校正,是高光谱遥感数据处理中极为重要的环节。文章介绍了EO-1hyperion高光谱数据的特点,以及用FLAASH(Fast Lin...由于受到大气的影响,传感器接收到的辐射信息不能真实地反映地表反射光谱信息,因此,从遥感影像中去除大气的影响,即进行大气校正,是高光谱遥感数据处理中极为重要的环节。文章介绍了EO-1hyperion高光谱数据的特点,以及用FLAASH(Fast Line of Sight Atmospheric Analysis of Spectral Hyper-cubes)模块对新疆地区Hyperion高光谱遥感影像进行大气校正,并对处理结果进行评价,结果表明FLAASH模块大气纠正效果良好。展开更多
文摘Hyperspectral images have wide applications in the fields of geology,mineral exploration,agriculture,forestry and environmental studies etc.due to their narrow band width with numerous channels.However,these images commonly suffer from atmospheric effects,thereby limiting their use.In such a situation,atmospheric correction becomes a necessary pre-requisite for any further processing and accurate interpretation of spectra of different surface materials/objects.In the present study,two very advance atmospheric approaches i.e.QUAC and FLAASH have been applied on the hyperspectral remote sensing imagery.The spectra of vegetation,man-made structure and different minerals from the Gadag area of Karnataka,were extracted from the raw image and also from the QUAC and FLAASH corrected images.These spectra were compared among themselves and also with the existing USGS and JHU spectral library.FLAASH is rigorous atmospheric algorithm and requires various parameters to perform but it has capability to compensate the effects of atmospheric absorption.These absorption curves in any spectra play an important role in identification of the compositions.Therefore,the presence of unwanted absorption features can lead to wrong interpretation and identification of mineral composition.FLAASH also has an advantage of spectral polishing which provides smooth spectral curves which helps in accurate identification of composition of minerals.Therefore,this study recommends that FLAASH is better than QUAC for atmospheric correction and correct interpretation and identification of composition of any object or minerals.
文摘高光谱遥感影像由于集中了高光谱分辨率和高空间分辨率的优点,在对地观测中具有不可替代的优势。实际应用当中,往往需要从遥感影像获取地物的地表反射率信息,这就要求首先从影像中去除大气的影响,即进行大气纠正及补偿。目前,对遥感影像进行大气纠正的算法有很多,详细介绍了基于遥感影像自身信息的大气纠正模块FLAA SH(Fast L ine of S ight A tm ospheric A nalysisof SpectralHypercubes)所涉及的算法,并利用该模块对AV IR IS航空遥感影像进行了大气纠正,对不同的结果进行了分析对比,从而对该算法进行了初步的评价。
文摘利用FLAASH和ATCOR2模型对漓江流域的Landsat ETM+数据进行大气校正,以GLS(Global Land Survey)获得的同步高质量地表反射率影像作为参考数据,从目视效果、典型地物光谱特征和波谱一致性三方面对两种模型的校正结果进行对比分析。研究表明,两种模型均可以对ETM+影像进行有效的大气校正,FLAASH模型的校正精度优于ATCOR2模型。
文摘由于受到大气的影响,传感器接收到的辐射信息不能真实地反映地表反射光谱信息,因此,从遥感影像中去除大气的影响,即进行大气校正,是高光谱遥感数据处理中极为重要的环节。文章介绍了EO-1hyperion高光谱数据的特点,以及用FLAASH(Fast Line of Sight Atmospheric Analysis of Spectral Hyper-cubes)模块对新疆地区Hyperion高光谱遥感影像进行大气校正,并对处理结果进行评价,结果表明FLAASH模块大气纠正效果良好。