Al-Si based alloys are interestingly used to produce automotive components. Fabrication of such components by powder metallurgy (PM) has been developed continuously. During PM, several parameters affect the sinterab...Al-Si based alloys are interestingly used to produce automotive components. Fabrication of such components by powder metallurgy (PM) has been developed continuously. During PM, several parameters affect the sinterability of the aluminium powder, including atmospheric dew point which is regarded as one of the crucial parameters. The objective of this work was to investigate the effect of the atmospheric dew point on the sinterability of AI-14.9Si-2.4Cu-0.55Mg by studying the sintering characters obtained under various atmospheric dew points. The aluminium alloy powder was pressed into tensile specimens and subsequently sintered in a nitrogen atmosphere at 560 ℃ for 60 min with varied atmospheric dew points. The results show that as the dew point decreased, the sintered properties were improved. The atmospheric dew point of -38.4 ℃ is sufficient to obtain good sintering characters and it is achievable in a commercial furnace.展开更多
文摘Al-Si based alloys are interestingly used to produce automotive components. Fabrication of such components by powder metallurgy (PM) has been developed continuously. During PM, several parameters affect the sinterability of the aluminium powder, including atmospheric dew point which is regarded as one of the crucial parameters. The objective of this work was to investigate the effect of the atmospheric dew point on the sinterability of AI-14.9Si-2.4Cu-0.55Mg by studying the sintering characters obtained under various atmospheric dew points. The aluminium alloy powder was pressed into tensile specimens and subsequently sintered in a nitrogen atmosphere at 560 ℃ for 60 min with varied atmospheric dew points. The results show that as the dew point decreased, the sintered properties were improved. The atmospheric dew point of -38.4 ℃ is sufficient to obtain good sintering characters and it is achievable in a commercial furnace.