期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Annual Fluxes of Heavy Metal Elements in Atmospheric Dry and Wet Depositions in the Pearl River Delta Economic Region, Guangdong Province
1
作者 Lu Lu Cen Kuang 《Journal of Geoscience and Environment Protection》 2021年第5期8-14,共7页
<div style="text-align:justify;"> There are 158 sampling points to be set up in the Pearl River delta economic region. The collecting period is mostly one year, namely, from July 2007 to July 2008. The... <div style="text-align:justify;"> There are 158 sampling points to be set up in the Pearl River delta economic region. The collecting period is mostly one year, namely, from July 2007 to July 2008. The eight heavy metal elements of Cr, Ni, Cu, Pb, Zn, As, Hg, and Cd in 474 dry and wet deposition samples were tested in terms of the standard procedures. Their average annual fluxes have no obvious difference between dry deposition and wet deposition. So these elements might be at an equilibrium or quasi-equilibrium state between dry deposition and wet deposition. </div> 展开更多
关键词 atmospheric dry and Wet deposition Heavy Metal Element FLUX Pearl River Delta Economic Region
下载PDF
Atmospheric deposition of inorganic nitrogen in a semi-arid grassland of Inner Mongolia, China 被引量:5
2
作者 ZHANG Yibo XU Wen +4 位作者 WEN Zhang WANG Dandan HAO Tianxiang TANG Aohan LIU Xuejun 《Journal of Arid Land》 SCIE CSCD 2017年第6期810-822,共13页
Due to increasing global demand for crop production and energy use, more and more reactive nitrogen(Nr) has been generated and emitted to the environment. As a result, global atmospheric nitrogen(N) deposition has... Due to increasing global demand for crop production and energy use, more and more reactive nitrogen(Nr) has been generated and emitted to the environment. As a result, global atmospheric nitrogen(N) deposition has tripled since the industrial revolution and the ecological environment and human health have been harmed. In this study, we measured dry and wet/bulk N deposition from July 2013 to December 2015 in a semi-arid grassland of Duolun County, Inner Mongolia, China. The samples of dry and wet/bulk N deposition were collected monthly with a DELTA(DEnuder for Long Term Atmospheric sampling) system and with Gradko passive samplers and a precipitation gauge. The measured results show that the annual mean concentrations of NH_3, NO_2, HNO_3, particulate NH_4~+(pNH_4~+) and particulate NO_3^-(pNO_3^-) in atmosphere were 2.33, 1.90, 0.18, 1.42 and 0.42 μg N/m3, respectively, and that the annual mean volume-weighted concentrations of NH_4~+-N and NO_3^--N in precipitation were 2.71 and 1.99 mg N/L, respectively. The concentrations of Nr components(including NH_3, NO_2, HNO_3, p NH_4~+, pNO_3^-, NH_4~+-N and NO_3^--N) exhibited different seasonal variations. Specifically, NO_2 and HNO_3 exhibited higher concentrations in autumn than in summer, while the other Nr components(NH_3, pNH_4~+, pNO_3^-, NH_4~+-N and NO_3^--N) showed the highest values in summer. Based on measured concentrations of Nr components and their deposition velocities estimated using the GEOS-Chem global atmospheric chemical transport model, the calculated annual mean dry deposition fluxes were 3.17, 1.13, 0.63, 0.91 and 0.36 kg N/(hm^2·a) for NH_3, NO_2, HNO_3, p NH_4~+ and pNO_3^-, respectively, and the calculated annual mean wet/bulk deposition fluxes were 5.37 and 3.15 kg N/(hm^2·a) for NH_4~+-N and NO_3^--N, respectively. The estimated annual N deposition(including dry N deposition and wet/bulk N deposition) reached 14.7 kg N/(hm^2·a) in grassland of Duolun County, approaching to the upper limit of the N critical load(10–15 kg N/(hm^2·a)). Dry and wet/bulk deposition fluxes of all Nr components(with an exception of HNO_3) showed similar seasonal variations with the maximum deposition flux in summer and the minimum in winter. Reduced Nr components(e.g., gaseous NH_3 and p NH_4~+ in atmosphere and NH_4~+-N in precipitation) dominated the total N deposition at the sampling site(accounted for 64% of the total N deposition), suggesting that the deposited atmospheric Nr mainly originated from agricultural activities. Considering the projected future increases in crop and livestock production in Inner Mongolia, the ecological and human risks to the negative effects of increased N deposition could be increased if no mitigation measures are taken. 展开更多
关键词 atmospheric reactive nitrogen dry deposition wet/bulk deposition reduced nitrogen grassland ecosystem Inner Mongolia
下载PDF
Wet and dry deposition fluxes of heavy metals in Pearl River Delta Region(China):Characteristics,ecological risk assessment,and source apportionment 被引量:21
3
作者 Lyumeng Ye Minjuan Huang +6 位作者 Buqing Zhong Xuemei Wang Qiulan Tu Haoran Sun Chao Wang Luolin Wu Ming Chang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第8期106-123,共18页
The atmospheric deposition of heavy metals poses serious risks to the ecological system and human health. To advance our knowledge of atmospheric dry/wet heavy metal deposition in the PRD region, monthly fluxes were e... The atmospheric deposition of heavy metals poses serious risks to the ecological system and human health. To advance our knowledge of atmospheric dry/wet heavy metal deposition in the PRD region, monthly fluxes were examined based on soluble/insoluble fractions of five heavy metal elements(Cu, Pb, Cd, Cr and Zn) in samples collected from January 2014 to December 2015 at Guangzhou(urban) and Dinghushan(suburban) sites. The ratios of wet/dry deposition fluxes indicated that heavy metal deposition was governed by wet deposition rather than dry deposition in the PRD region. Affected by the shifting of the Asian monsoon, wet deposition fluxes exhibited significant seasonal variation between summer monsoon seasons(April to September) and winter monsoon seasons(October to February) in this region. Cd was classified as an extremely strong potential ecological risk based on solubility and the Hakanson ecological risk index. Source contributions to wet deposition were calculated by PMF, suggesting that dust, biomass burning, industries,vehicles, long-range transport and marine aerosol sources in Guangzhou, and Zn fertilizers,marine aerosol sources, agriculture, incense burning, biomass burning, vehicles and the ceramics industry in Dinghushan, were the potential sources of heavy metals. 展开更多
关键词 atmospheric dry/wet deposition Heavy metals Ecological risk assessment Sources apportionment The Pearl River Delta region
原文传递
Assessment of Nitrogen Pollutant Sources in Surface Waters of Taihu Lake Region 被引量:50
4
作者 XIE Ying-Xin XIONG Zheng-Qin +2 位作者 XING Guang-Xi SUN Guo-Qing ZHU Zhao-Liang 《Pedosphere》 SCIE CAS CSCD 2007年第2期200-208,共9页
The nitrogen (N) pollution status of the 12 most important rivers in Changshu, Taihu Lake region was investigated. Water samples were collected from depths of 0.5-1.0 m with the aid of the global positioning system ... The nitrogen (N) pollution status of the 12 most important rivers in Changshu, Taihu Lake region was investigated. Water samples were collected from depths of 0.5-1.0 m with the aid of the global positioning system (GPS). The seasonal variations in the concentrations of different N components in the rivers were measured. Using tension-free monolith lysimeters and ^15N-labeled fertilizer, field experiments were carried out in this region to determine variations of iSN abundance of NO3^- in the leachate during the rice and wheat growing seasons, respectively. Results showed that the main source of N pollution of surface waters in the Taihu Lake region was not the N fertilizer applied in the farmland but the urban domestic sewage and rural human and animal excreta directly discharged into the water bodies without treatment. Atmospheric dry and wet N deposition was another evident source of N pollutant of the surface waters. In conclusion, it would not be correct to attribute the N applied to farmlands as the source of N pollution of the surface waters in this region. 展开更多
关键词 atmospheric dry and wet N deposition iSN-labeled fertilizer N pollution sources in surface waters N runoff from the farmland Taihu Lake region
下载PDF
Altitude-dependent distribution of 137Cs in the environment:a case study of Aragats massif, Armenia
5
作者 Konstantin Pyuskyulyan Stephen P.LaMont +3 位作者 Vovik Atoyan Olga Belyaeva Nona Movsisyan Armen Saghatelyan 《Acta Geochimica》 EI CAS CSCD 2020年第1期127-138,共12页
This paper considers the distribution of technogenic 137Cs and naturally occurring radionuclides:238 U,232 Th and40 R concentrations in soils and 137Cs in atmospheric dry depositions by altitudinal belts of the Aragat... This paper considers the distribution of technogenic 137Cs and naturally occurring radionuclides:238 U,232 Th and40 R concentrations in soils and 137Cs in atmospheric dry depositions by altitudinal belts of the Aragats mountain massif,Republic of Armenia.Undisturbed soil samples were collected at altitudes from 1000 to 3200 m.For the determination of geochemical variability,two soil sampling campaigns were undertaken.Atmospheric dry depositions were sampled from five stations at1100-3200 m collected onto organic fiber filters between June and December 2016.137Cs activity was measured using a high-purity Germanium detector coupled to a multichannel analyzer(Canberra).Results indicated that specific activity of 137Cs in soils at 1000 m is495-528 Bq m^-2,andat3200 mis10,500-11,470 Bq m^-2.No correlation observed for 137Cs versus naturally occurring radionuclides,which varies in distribution by altitude.Specific activities of 137Cs in dry atmospheric depositions varies from 1.06 at 846 m to2.37 Bq m^-2 per quarter at 3200 m and increases as the altitude increases.Activities of 137Cs in soil and dry atmospheric deposition correlated significantly,and 137Cs activity in soils and atmospheric dry depositions decrease as the absolute altitude decreases.The 50-year effective dose from exposure to 137Cs fallout varies with altitude from 0.007 to 1.42 m Sv. 展开更多
关键词 137Cs Distribution by altitude Naturally occurring radionuclides TOPSOIL dry atmospheric depositions Gamma radiation Mountain regions
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部