The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties ...The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties of organic coatings.This study compared a bare epoxy coating with one containing zinc phosphate corrosion inhibitors,both applied on ACM sensors,to observe their corrosion protection properties over time.Coatings with artificial damage via scratches were exposed to immersion and alternating dry and wet environments,which allowed for monitoring galvanic corrosion currents in real-time.Throughout the corrosion tests,the ACM currents of the zinc phosphate/epoxy coating were considerably lower than those of the blank epoxy coating.The trend in ACM current variations closely matched the results obtained from regular electrochemical tests and surface analysis.This alignment highlights the potential of the ACM technique in evaluating the corrosion protection capabilities of organic coatings.Compared with the blank epoxy coating,the zinc phosphate/epoxy coating showed much-decreased ACM current values that confirmed the effective inhibition of zinc phosphate against steel corrosion beneath the damaged coating.展开更多
This work constructed a machine learning(ML)model to predict the atmospheric corrosion rate of low-alloy steels(LAS).The material properties of LAS,environmental factors,and exposure time were used as the input,while ...This work constructed a machine learning(ML)model to predict the atmospheric corrosion rate of low-alloy steels(LAS).The material properties of LAS,environmental factors,and exposure time were used as the input,while the corrosion rate as the output.6 dif-ferent ML algorithms were used to construct the proposed model.Through optimization and filtering,the eXtreme gradient boosting(XG-Boost)model exhibited good corrosion rate prediction accuracy.The features of material properties were then transformed into atomic and physical features using the proposed property transformation approach,and the dominant descriptors that affected the corrosion rate were filtered using the recursive feature elimination(RFE)as well as XGBoost methods.The established ML models exhibited better predic-tion performance and generalization ability via property transformation descriptors.In addition,the SHapley additive exPlanations(SHAP)method was applied to analyze the relationship between the descriptors and corrosion rate.The results showed that the property transformation model could effectively help with analyzing the corrosion behavior,thereby significantly improving the generalization ability of corrosion rate prediction models.展开更多
The spring atmospheric heat source(AHS)over the Tibetan Plateau(TP)has been suggested to affect the Asian summer monsoon and summer precipitation over South China.However,its influence on the summer precipitation in N...The spring atmospheric heat source(AHS)over the Tibetan Plateau(TP)has been suggested to affect the Asian summer monsoon and summer precipitation over South China.However,its influence on the summer precipitation in Northeast China(NEC)remains unknown.The connection between spring TP AHS and subsequent summer precipitation over NEC from 1961 to 2020 is analyzed in this study.Results illustrate that stronger spring TP AHS can enhance subsequent summer NEC precipitation,and higher soil moisture in the Yellow River Valley-North China region(YRVNC)acts as a bridge.During spring,the strong TP AHS could strengthen the transportation of water vapor to East China and lead to excessive rainfall in the YRVNC.Thus,soil moisture increases,which regulates local thermal conditions by decreasing local surface skin temperature and sensible heat.Owing to the memory of soil moisture,the lower spring sensible heat over the YRVNC can last until mid-summer,decrease the land–sea thermal contrast,and weaken the southerly winds over the East Asia–western Pacific region and convective activities over the South China Sea and tropical western Pacific.This modulates the East Asia–Pacific teleconnection pattern,which leads to a cyclonic anomaly and excessive summer precipitation over NEC.展开更多
Surface ozone(O_(3))poses significant threats to public health,agricultural crops,and plants in natural ecosystems.Global warming is likely to increase future O_(3)mainly by altering atmospheric photochemical reaction...Surface ozone(O_(3))poses significant threats to public health,agricultural crops,and plants in natural ecosystems.Global warming is likely to increase future O_(3)mainly by altering atmospheric photochemical reactions and enhancing biogenic volatile organic compound(BVOC)emissions.To assess the impacts of the future 1.5 K climate target on O_(3)concentrations and ecological O_(3)exposure in China,numerical simulations were conducted using the CMAQ(Community Multiscale Air Quality)model during April-October 2018.Ecological O_(3)exposure was estimated using six indices(i.e.,M7,M24,N100,SUM60,W126,and AOT40f).The results show that the temperature rise increases the MDA8 O_(3)(maximum daily eight-hour average O_(3))concentrations by∼3 ppb and the number of O_(3)exceedance days by 10-20 days in the North China Plain(NCP),Yangtze River Delta(YRD),and Sichuan Basin(SCB)regions.All O_(3)exposure indices show substantial increases.M24 and M7 in eastern and southern China will rise by 1-3 ppb and 2-4 ppb,respectively.N100 increases by more than 120 h in the surrounding regions of Beijing.SUM60 increases by greater than 9 ppm h^(−1),W126 increases by greater than 15 ppm h^(−1)in Shaanxi and SCB,and AOT40f increases by 6 ppm h^(−1)in NCP and SCB.The temperature increase also promotes atmospheric oxidation capacity(AOC)levels,with the higher AOC contributed by OH radicals in southern China but by NO_(3)radicals in northern China.The change in the reaction rate caused by the temperature increase has a greater influence on O_(3)exposure and AOC than the change in BVOC emissions.展开更多
To quantify the relative contributions of Arctic sea ice and unforced atmospheric internal variability to the “warm Arctic, cold East Asia”(WACE) teleconnection, this study analyses three sets of large-ensemble simu...To quantify the relative contributions of Arctic sea ice and unforced atmospheric internal variability to the “warm Arctic, cold East Asia”(WACE) teleconnection, this study analyses three sets of large-ensemble simulations carried out by the Norwegian Earth System Model with a coupled atmosphere–land surface model, forced by seasonal sea ice conditions from preindustrial, present-day, and future periods. Each ensemble member within the same set uses the same forcing but with small perturbations to the atmospheric initial state. Hence, the difference between the present-day(or future) ensemble mean and the preindustrial ensemble mean provides the ice-loss-induced response, while the difference of the individual members within the present-day(or future) set is the effect of atmospheric internal variability. Results indicate that both present-day and future sea ice loss can force a negative phase of the Arctic Oscillation with a WACE pattern in winter. The magnitude of ice-induced Arctic warming is over four(ten) times larger than the ice-induced East Asian cooling in the present-day(future) experiment;the latter having a magnitude that is about 30% of the observed cooling. Sea ice loss contributes about 60%(80%) to the Arctic winter warming in the present-day(future) experiment. Atmospheric internal variability can also induce a WACE pattern with comparable magnitudes between the Arctic and East Asia. Ice-lossinduced East Asian cooling can easily be masked by atmospheric internal variability effects because random atmospheric internal variability may induce a larger magnitude warming. The observed WACE pattern occurs as a result of both Arctic sea ice loss and atmospheric internal variability, with the former dominating Arctic warming and the latter dominating East Asian cooling.展开更多
It is commonly believed that the atmosphere is decoupled from the solid Earth.Thus,it is difficult for the seismic wave energy inside the Earth to propagate into the atmosphere,and atmospheric pressure wave signals ex...It is commonly believed that the atmosphere is decoupled from the solid Earth.Thus,it is difficult for the seismic wave energy inside the Earth to propagate into the atmosphere,and atmospheric pressure wave signals excited by earthquakes are unlikely to exist in atmospheric observations.An increasing number of studies have shown that earthquakes,volcanoes,and tsunamis can perturb the Earth's atmosphere due to various coupling effects.However,the observations mainly focus on acoustic waves with periods of less than 10 min and inertial gravity waves with periods of greater than 1 h.There are almost no clear observations of gravity waves that coincide with observations of low-frequency signals of the Earth's free oscillation frequency band within 1 h.This paper investigates atmospheric gravity wave signals within1 h of surface-atmosphere observations using the periodogram method based on seismometer and microbarometer observations from the global seismic network before and after the July 29,2021 M_(w)8.2 Alaska earthquake in the United States.The numerical results show that the atmospheric gravity wave signals with frequencies similar to those of the Earth's free oscillations _(0)S_(2) and _(0)T_(2) can be detected in the microbaro meter observations.The results con firm the existence of atmospheric gravity waves,indicating that the atmosphere and the solid Earth are not decoupled within this frequency band and that seismic wave energy excited by earthquakes can propagate from the interior of the Earth to the atmosphere and enhance the atmospheric gravity wave signals within 1 h.展开更多
The distribution of adsorbent particle sizes typically has a significant impact on adsorption performance.Most fixed-bed adsorption studies adopt the assumption of average particle size to simplify the adsorption mode...The distribution of adsorbent particle sizes typically has a significant impact on adsorption performance.Most fixed-bed adsorption studies adopt the assumption of average particle size to simplify the adsorption model,but this does not eliminate the deviation between experiments and simulations caused by particle size distribution in practice.In this study,the population balance equation(PBE)and fixed-bed adsorption kinetics model were combined to simulate the adsorption process in a fixed-bed reactor,modeling the distribution of adsorbate uptake over time on adsorbent particles of different sizes.We integrated and optimized the PBE and fixed-bed mass transfer model in the algorithm,and the resulting combined model adopts a variable time step size,which can achieve a balance between computational efficiency and error while ensuring computational convergence.By slicing the model in the spatial dimension,multiple sets of PBE can be calculated in parallel,improving computational efficiency.The adsorption process of single-component and multi-component CO_(2)/CH_(4)/N_(2)on 4A zeolite without binder was simulated,and the influence of adsorbent particle size distribution was analyzed.Simulation results show that the assumption of average adsorbent particle size,which was commonly made in published work,will underestimate the time required for adsorbates to break through the fixed bed compared with the assumption of uniform adsorbent particle size.This model helps to consider the impact of adsorbent particle size distribution on the adsorption process,thereby improving the prediction accuracy of adsorbent performance.展开更多
A previously developed hybrid coupled model(HCM)is composed of an intermediate tropical Pacific Ocean model and a global atmospheric general circulation model(AGCM),denoted as HCMAGCM.In this study,different El Ni...A previously developed hybrid coupled model(HCM)is composed of an intermediate tropical Pacific Ocean model and a global atmospheric general circulation model(AGCM),denoted as HCMAGCM.In this study,different El Niño flavors,namely the Eastern-Pacific(EP)and Central-Pacific(CP)types,and the associated global atmospheric teleconnections are examined in a 1000-yr control simulation of the HCMAGCM.The HCMAGCM indicates profoundly different characteristics among EP and CP El Niño events in terms of related oceanic and atmospheric variables in the tropical Pacific,including the amplitude and spatial patterns of sea surface temperature(SST),zonal wind stress,and precipitation anomalies.An SST budget analysis indicates that the thermocline feedback and zonal advective feedback dominantly contribute to the growth of EP and CP El Niño events,respectively.Corresponding to the shifts in the tropical rainfall and deep convection during EP and CP El Niño events,the model also reproduces the differences in the extratropical atmospheric responses during the boreal winter.In particular,the EP El Niño tends to be dominant in exciting a poleward wave train pattern to the Northern Hemisphere,while the CP El Niño tends to preferably produce a wave train similar to the Pacific North American(PNA)pattern.As a result,different climatic impacts exist in North American regions,with a warm-north and cold-south pattern during an EP El Niño and a warm-northeast and cold-southwest pattern during a CP El Niño,respectively.This modeling result highlights the importance of internal natural processes within the tropical Pacific as they relate to the genesis of ENSO diversity because the active ocean–atmosphere coupling is allowed only in the tropical Pacific within the framework of the HCMAGCM.展开更多
Using the observation data in Yongxing Island,South China Sea(SCS)from December 2013 to November 2018,the multiple time scales variation of atmospheric CO_(2)and CH_(4)were analyzed to understand their temporal variat...Using the observation data in Yongxing Island,South China Sea(SCS)from December 2013 to November 2018,the multiple time scales variation of atmospheric CO_(2)and CH_(4)were analyzed to understand their temporal variation characteristics and controlling factors.The regional-averaged background mole fractions of CO_(2)and CH_(4)both show a single-period sinusoidal variation with a lower value at noon and a higher value in the wee hours.In the seasonal scale,they exhibited a significant seasonal difference with higher values in winter and lower values in summer.In the annual scale,CO_(2)and CH_(4)both show an increasing trend,with an annual growth rate of approximately 3.2 ppm and 12 ppb,respectively.The annual growth rate at this site was higher than the global average.The change in atmospheric CO_(2)and CH_(4)in Yongxing Island was probably caused by the higher emission of the surrounding areas and the airflows driven by monsoon.Hopefully,the long-term and high-resolution greenhouse gases(GHGs)dataset will aid relevent researchers and decision-makers in performing more in-depth studies for GHG sources in order to derive effective strategies.展开更多
To study the atmospheric aging of acrylic coatings,a two-year aging exposure experiment was conducted in 13 representative climatic environments in China.An atmospheric aging evaluation model of acrylic coatings was d...To study the atmospheric aging of acrylic coatings,a two-year aging exposure experiment was conducted in 13 representative climatic environments in China.An atmospheric aging evaluation model of acrylic coatings was developed based on aging data including11 environmental factors from 567 cities.A hybrid method of random forest and Spearman correlation analysis was used to reduce the redundancy and multicollinearity of the data set by dimensionality reduction.A semi-supervised collaborative trained regression model was developed with the environmental factors as input and the low-frequency impedance modulus values of the electrochemical impedance spectra of acrylic coatings in 3.5wt%NaCl solution as output.The model improves accuracy compared to supervised learning algorithms model(support vector machines model).The model provides a new method for the rapid evaluation of the aging performance of acrylic coatings,and may also serve as a reference to evaluate the aging performance of other organic coatings.展开更多
Here,a nonhydrostatic alternative scheme(NAS)is proposed for the grey zone where the nonhydrostatic impact on the atmosphere is evident but not large enough to justify the necessity to include an implicit nonhydrostat...Here,a nonhydrostatic alternative scheme(NAS)is proposed for the grey zone where the nonhydrostatic impact on the atmosphere is evident but not large enough to justify the necessity to include an implicit nonhydrostatic solver in an atmospheric dynamical core.The NAS is designed to replace this solver,which can be incorporated into any hydrostatic models so that existing well-developed hydrostatic models can effectively serve for a longer time.Recent advances in machine learning(ML)provide a potential tool for capturing the main complicated nonlinear-nonhydrostatic relationship.In this study,an ML approach called a neural network(NN)was adopted to select leading input features and develop the NAS.The NNs were trained and evaluated with 12-day simulation results of dry baroclinic-wave tests by the Weather Research and Forecasting(WRF)model.The forward time difference of the nonhydrostatic tendency was used as the target variable,and the five selected features were the nonhydrostatic tendency at the last time step,and four hydrostatic variables at the current step including geopotential height,pressure in two different forms,and potential temperature,respectively.Finally,a practical NAS was developed with these features and trained layer by layer at a 20-km horizontal resolution,which can accurately reproduce the temporal variation and vertical distribution of the nonhydrostatic tendency.Corrected by the NN-based NAS,the improved hydrostatic solver at different horizontal resolutions can run stably for at least one month and effectively reduce most of the nonhydrostatic errors in terms of system bias,anomaly root-mean-square error,and the error of the wave spatial pattern,which proves the feasibility and superiority of this scheme.展开更多
This study focuses on air quality in southern Benin in order to show public authorities what the Beninese populations are exposed to for efficient decision-making. Two sampling campaigns were carried out, one in the w...This study focuses on air quality in southern Benin in order to show public authorities what the Beninese populations are exposed to for efficient decision-making. Two sampling campaigns were carried out, one in the wet period and the other in the dry season. The measurements were taken using a monitor called an “Air Quality Monitor”. For data processing, the multiple comparison methods of Dun (1961) and the Wilcoxon test were used. To maintain legitimacy, all spatial data were included in the official cartographic repository of Benin: WGS 1984, Transverse Mercator Universe Projection (UTM), Zone 31 North. The Moran statistic was used to measure the levels of spatial autocorrelation of the variables studied and to test the significance. In order to locate the spatial subsets, the local spatial association indices of Anselin Local Moran and Getis-Ord, Gi* were used. In terms of results, on the 13 monitoring sites and the 8 parameters chosen to determine air quality, we do not note any significant inter-seasonal difference. Of the eight parameters, only three parameters present spatial autocorrelation leading to predictions of ambient air quality over the entire study area based on the distance separating the points, namely, PM<sub>2.5</sub>, PM<sub>10</sub> and ambient air quality index (AQI). The localities affected by atmospheric pollution in South Benin are located in the south-western part of Benin, headed by Cotonou, which is heavily polluted by CO<sub>2</sub>, TCOV, PM<sub>10</sub> and PM<sub>2.5</sub>.展开更多
The microstructure and precipitated phases of as-cast Mg-5Y-1.5Nd-x Zn-0.5Zr(x=0,2,4,6 wt.%)alloys were investigated by optical microscopy,scanning electron microscopy,energy-dispersive spectrometry and X-ray Diffract...The microstructure and precipitated phases of as-cast Mg-5Y-1.5Nd-x Zn-0.5Zr(x=0,2,4,6 wt.%)alloys were investigated by optical microscopy,scanning electron microscopy,energy-dispersive spectrometry and X-ray Diffraction.The exposure corrosion experiment of these magnesium alloys was tested in South China Sea and KEXUE vessel atmospheric environment.The corrosion characteristic and mechanism of magnesium alloys of Mg-5Y-1.5Nd-x Zn-0.5Zr(x=0,2,4,6 wt.%)alloys were analyzed by weight loss rate,corrosion depth,corrosion products and corrosion morphologies.The electrochemical corrosion tests were also measured in the natural seawater.The comprehensive results showed that Mg-5Y-1.5Nd-4Zn-0.5Zr magnesium alloy existed the best corrosion resistance whether in the marine atmospheric environment and natural seawater environment.That depended on the microstructure,type and distribution of precipitated phases in Mg-5Y-1.5Nd-4Zn-0.5Zr magnesium alloy.Sufficient quantity anodic precipitated phases in the microstructure of Mg-5Y-1.5Nd-4Zn-0.5Zr alloy played the key role in the corrosion resistance.展开更多
In this work,a gas-solid two-phase gliding arc discharge(GS-GAD)reactor was built.Gliding arc was formed in the gap between the blade electrodes,and solid powder was deposited on the sieve plate positioned beneath the...In this work,a gas-solid two-phase gliding arc discharge(GS-GAD)reactor was built.Gliding arc was formed in the gap between the blade electrodes,and solid powder was deposited on the sieve plate positioned beneath the blade electrodes.A range of experimental parameters,including the inter-electrode spacing,gas flow rate,applied voltage,and the type of the powder,were systematically varied to elucidate the influence of solid powder matter on the dynamics of gliding arc discharge(GAD).The discharge images were captured by ICCD and digital camera to investigate the mass transfer characteristics of GS-GAD,and the electrical parameters,such as the effective values of voltage,current,and discharge power were record to reveal the discharge characteristics of GS-GAD.The results demonstrate that powder undergoes spontaneous movement towards the upper region of the gliding arc due to the influence of electric field force.Increasing the discharge voltage,decreasing relative dielectric constant of the powder and reducing the electrode-to-sieve-plate distance all contribute to a greater involvement of powder in the GAD process,subsequently resulting in an enhanced powder concentration within the GAD region.Additionally,powder located beneath the gliding arc experiences downward resistance caused by the opposing gas flow and arc.Excessive gas flow rate notably hampers the powder concentration within the discharge region,and the velocity of powder motion in the upper part of the GAD region is reduced.Under the condition of electrode-to-sieve-plate distance of 30 mm,gas flow rate of 1.5 L/min,and peak-to-peak voltage of 31 kV,the best combination of arc gliding and powder spark discharge phenomena can be achieved with the addition of Al_(2)O_(3) powder.展开更多
Based on the lightning observation data from the Fengyun-4A(FY-4A)Lightning Mapping Imager(FY-4A/LMI)and the Lightning Imaging Sensor(LIS)on the International Space Station(ISS),we extract the“event”type data as the...Based on the lightning observation data from the Fengyun-4A(FY-4A)Lightning Mapping Imager(FY-4A/LMI)and the Lightning Imaging Sensor(LIS)on the International Space Station(ISS),we extract the“event”type data as the lightning detection results.These observations are then compared with the cloud-to-ground(CG)lightning observation data from the China Meteorological Administration.This study focuses on the characteristics of lightning activity in Southeast China,primarily in Jiangxi Province and its adjacent areas,from April to September,2017–2022.In addition,with the fifth-generation European Centre for Medium-Range Weather Forecasts reanalysis data,we further delved into the potential factors influencing the distribution and variations in lightning activity and their primary related factors.Our findings indicate that the lightning frequency and density of the FY-4A/LMI,ISS-LIS and CG data are higher in southern and central Jiangxi,central Fujian Province,and western and central Guangdong Province,while they tend to be lower in eastern Hunan Province.In general,the high-value areas of lightning density for the FY-4A/LMI are located in inland mountainous areas.The lower the latitude is,the higher the CG lightning density is.High-value areas of the CG lightning density are more likely to be located in eastern Fujian and southeastern Zhejiang Province.However,the high-value areas of lightning density for the ISS-LIS are more dispersed,with a scattered distribution in inland mountainous areas and along the coast of eastern Fujian.Thus,the mountainous terrain is closely related to the high-value areas of the lightning density.The locations of the high-value areas of the lightning density for the FY-4A/LMI correspond well with those for the CG observations,and the seasonal variations are also consistent.In contrast,the distribution of the high-value areas of the lightning density for the ISS-LIS is more dispersed.The positions of the peak frequency of the FY-4A/LMI lightning and CG lightning contrast with local altitudes,primarily located at lower altitudes or near mountainsides.K-index and convective available potential energy(CAPE)can better reflect the local boundary layer conditions,where the lightning density is higher and lightning seasonal variations are apparent.There are strong correlations in the annual variations between the dew-point temperature(Td)and CG lightning frequency,and the monthly variations of the dew-point temperature and CAPE are also strongly correlated with monthly variations of CG lightning,while they are weakly correlated with the lightning frequency for the FY-4A/LMI and ISS-LIS.This result reflects that the CAPE shows a remarkable effect on the CG lightning frequency during seasonal transitions.展开更多
The atmospheric carbon dioxide(CO_(2))concentration has been increasing rapidly since the Industrial Revolution,which has led to unequivocal global warming and crucial environmental change.It is extremely important to...The atmospheric carbon dioxide(CO_(2))concentration has been increasing rapidly since the Industrial Revolution,which has led to unequivocal global warming and crucial environmental change.It is extremely important to investigate the interactions among atmospheric CO_(2),the physical climate system,and the carbon cycle of the underlying surface for a better understanding of the Earth system.Earth system models are widely used to investigate these interactions via coupled carbon-climate simulations.The Chinese Academy of Sciences Earth System Model version 2(CAS-ESM2.0)has successfully fixed a two-way coupling of atmospheric CO_(2)with the climate and carbon cycle on land and in the ocean.Using CAS-ESM2.0,we conducted a coupled carbon-climate simulation by following the CMIP6 proposal of a historical emissions-driven experiment.This paper examines the modeled CO_(2)by comparison with observed CO_(2)at the sites of Mauna Loa and Barrow,and the Greenhouse Gases Observing Satellite(GOSAT)CO_(2)product.The results showed that CAS-ESM2.0 agrees very well with observations in reproducing the increasing trend of annual CO_(2)during the period 1850-2014,and in capturing the seasonal cycle of CO_(2)at the two baseline sites,as well as over northern high latitudes.These agreements illustrate a good ability of CAS-ESM2.0 in simulating carbon-climate interactions,even though uncertainties remain in the processes involved.This paper reports an important stage of the development of CAS-ESM with the coupling of carbon and climate,which will provide significant scientific support for climate research and China’s goal of carbon neutrality.展开更多
In order to ascertain the effects of atmospheric pressure on developmental characteristics and the stability of AEA(air-entraining agent)solution bubbles,AEA solution experiments and AEA solution bubble experiments we...In order to ascertain the effects of atmospheric pressure on developmental characteristics and the stability of AEA(air-entraining agent)solution bubbles,AEA solution experiments and AEA solution bubble experiments were,respectively,conducted in Peking(50 m,101.2 kPa)and Lhasa(3,650 m,63.1 kPa).Surface tensions and inflection-point concentrations were tested based on AEA solutions,whilst developmental characteristics,thicknesses and elastic coefficients of liquid films were tested based on air bubbles of AEA solutions.The study involved three types of AEAs,which were TM-O,226A,and 226S.The experimental results show that initial sizes of TM-O,226A,and 226S are,respectively,increased by 43.5%,17.5%,and 3.8%.With the decrease of ambient pressure,the drainage rate and the drainage index of AEA solution bubbles increase.Interference experiments show that the liquid film thicknesses of all tested AEA solution bubbles are in micron scales.When the atmospheric pressure decreases from 101.2 to 63.1 kPa,the liquid film thicknesses of three types of AEA solutions decrease in various degrees;and film elasticities at critical thicknesses increase.Liquid film of 226S solution bubbles is the most stable,presenting as a minimum thickness variation.It should be noted that elastic coefficient of liquid film only represents the level at critical thickness,thus it can not be applied as the only evaluating indicator of bubble stability.For a type of AEA,factors affecting the stability of its bubbles under low atmospheric pressure include initial bubbles size,liquid film thickness,liquid film elasticity,ambient temperature,etc.展开更多
In high-altitude nuclear detonations,the proportion of pulsed X-ray energy can exceed 70%,making it a specific monitoring signal for such events.These pulsed X-rays can be captured using a satellite-borne X-ray detect...In high-altitude nuclear detonations,the proportion of pulsed X-ray energy can exceed 70%,making it a specific monitoring signal for such events.These pulsed X-rays can be captured using a satellite-borne X-ray detector following atmospheric transmission.To quantitatively analyze the effects of different satellite detection altitudes,burst heights,and transmission angles on the physical processes of X-ray transport and energy fluence,we developed an atmospheric transmission algorithm for pulsed X-rays from high-altitude nuclear detonations based on scattering correction.The proposed method is an improvement over the traditional analytical method that only computes direct-transmission X-rays.The traditional analytical method exhibits a maximum relative error of 67.79% compared with the Monte Carlo method.Our improved method reduces this error to within 10% under the same conditions,even reaching 1% in certain scenarios.Moreover,its computation time is 48,000 times faster than that of the Monte Carlo method.These results have important theoretical significance and engineering application value for designing satellite-borne nuclear detonation pulsed X-ray detectors,inverting nuclear detonation source terms,and assessing ionospheric effects.展开更多
Atmospheric Brown Carbon(BrC)with strong wavelength-dependence light-absorption ability can significantly affect radiative forcing.Highly resolved emission inventories with lower uncertainties are important premise an...Atmospheric Brown Carbon(BrC)with strong wavelength-dependence light-absorption ability can significantly affect radiative forcing.Highly resolved emission inventories with lower uncertainties are important premise and essential in scientifically evaluating impacts of emissions on air quality,human health and climate change.This study developed a bottom-up inventory of primary BrC from combustion sources in China from 1960 to 2016 with a spatial resolution at 0.1°×0.1,based on compiled emission factors and detailed activity data.The primary BrC emission in China was about 593 Gg(500-735 Gg as interquartile range)in 2016,contributing to 7%(5%-8%)of a previously estimated global total BrC emission.Residential fuel combustion was the largest source of primary BrC in China,with the contribution of 67%as the national average but ranging from 25%to 99%among different provincial regions.Signi-ficant spatial disparities were also observed in the relative shares of different fuel types.Coal combustion contribution varied from 8%to 99%across different regions.Heilongjiang and North China Plain had high emissions of primary BrC.Generally,on the national scale,spatial distribution of BrC emission density per area was aligned with the population distribution.Primary BrC emission from combustion sources in China have been declined since a peak of~1300 Gg in 1980,but the temporal trends were distinct in different sectors.The high-resolution inventory developed here enables radiative forcing simulations in future atmospheric models so as to promote better understanding of carbonaceous aerosol impacts in the Earth's climate system and to develop strategies achieving co-benefits of hu-man health protection and climate change.展开更多
This study compares the summer atmospheric water cycle,including moisture sources and consumption,in the upstream,midstream,and downstream regions of the Yarlung Zangbo River Basin in the southern Tibetan Plateau.The ...This study compares the summer atmospheric water cycle,including moisture sources and consumption,in the upstream,midstream,and downstream regions of the Yarlung Zangbo River Basin in the southern Tibetan Plateau.The evolutions of moisture properties under the influence of the westerly and summer southerly monsoon are examined using 5-yr multi-source measurements and ERA5 reanalysis data.Note that moisture consumption in this study is associated with clouds,precipitation,and diabatic heating.Compared to the midstream and downstream regions,the upstream region has less moisture,clouds,and precipitation,where the moisture is brought by the westerly.In early August,the vertical wet advection over this region becomes enhanced and generates more high clouds and precipitation.The midstream region has moisture carried by the westerly in June and by the southerly monsoon from July to August.The higher vertical wet advection maximum here forms more high clouds,with a precipitation peak in early July.The downstream region is mainly affected by the southerly-driven wet advection.The rich moisture and strong vertical wet advection here produce the most clouds and precipitation among the three regions,with a precipitation peak in late June.The height of the maximum moisture condensation is different between the midstream region(325 hPa)and the other two regions(375 hPa),due to the higher upward motion maximum in the midstream region.The diabatic heating structures show that stratiform clouds dominate the upstream region,stratiform clouds and deep convection co-exist in the midstream region,and deep convection systems characterize the downstream region.展开更多
基金financially supported by the National Natural Science Foundation of China(No.52371049)the Young Elite Scientists Sponsorship Program by the China Association for Science and Technology(YESS,No.2020QNRC001)the National Science and Technology Resources Investigation Program of China(Nos.2021FY100603 and 2019FY101404)。
文摘The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties of organic coatings.This study compared a bare epoxy coating with one containing zinc phosphate corrosion inhibitors,both applied on ACM sensors,to observe their corrosion protection properties over time.Coatings with artificial damage via scratches were exposed to immersion and alternating dry and wet environments,which allowed for monitoring galvanic corrosion currents in real-time.Throughout the corrosion tests,the ACM currents of the zinc phosphate/epoxy coating were considerably lower than those of the blank epoxy coating.The trend in ACM current variations closely matched the results obtained from regular electrochemical tests and surface analysis.This alignment highlights the potential of the ACM technique in evaluating the corrosion protection capabilities of organic coatings.Compared with the blank epoxy coating,the zinc phosphate/epoxy coating showed much-decreased ACM current values that confirmed the effective inhibition of zinc phosphate against steel corrosion beneath the damaged coating.
基金the National Key R&D Program of China(No.2021YFB3701705).
文摘This work constructed a machine learning(ML)model to predict the atmospheric corrosion rate of low-alloy steels(LAS).The material properties of LAS,environmental factors,and exposure time were used as the input,while the corrosion rate as the output.6 dif-ferent ML algorithms were used to construct the proposed model.Through optimization and filtering,the eXtreme gradient boosting(XG-Boost)model exhibited good corrosion rate prediction accuracy.The features of material properties were then transformed into atomic and physical features using the proposed property transformation approach,and the dominant descriptors that affected the corrosion rate were filtered using the recursive feature elimination(RFE)as well as XGBoost methods.The established ML models exhibited better predic-tion performance and generalization ability via property transformation descriptors.In addition,the SHapley additive exPlanations(SHAP)method was applied to analyze the relationship between the descriptors and corrosion rate.The results showed that the property transformation model could effectively help with analyzing the corrosion behavior,thereby significantly improving the generalization ability of corrosion rate prediction models.
基金supported by the Open Research Fund of TPESER(Grant No.TPESER202205)the Second Tibetan Plateau Scientific Expedition and Research Program(Grant No.2019QZKK0101)。
文摘The spring atmospheric heat source(AHS)over the Tibetan Plateau(TP)has been suggested to affect the Asian summer monsoon and summer precipitation over South China.However,its influence on the summer precipitation in Northeast China(NEC)remains unknown.The connection between spring TP AHS and subsequent summer precipitation over NEC from 1961 to 2020 is analyzed in this study.Results illustrate that stronger spring TP AHS can enhance subsequent summer NEC precipitation,and higher soil moisture in the Yellow River Valley-North China region(YRVNC)acts as a bridge.During spring,the strong TP AHS could strengthen the transportation of water vapor to East China and lead to excessive rainfall in the YRVNC.Thus,soil moisture increases,which regulates local thermal conditions by decreasing local surface skin temperature and sensible heat.Owing to the memory of soil moisture,the lower spring sensible heat over the YRVNC can last until mid-summer,decrease the land–sea thermal contrast,and weaken the southerly winds over the East Asia–western Pacific region and convective activities over the South China Sea and tropical western Pacific.This modulates the East Asia–Pacific teleconnection pattern,which leads to a cyclonic anomaly and excessive summer precipitation over NEC.
基金supported by the National Natural Science Foundation of China[grant numbers 42277095 and 42021004].
文摘Surface ozone(O_(3))poses significant threats to public health,agricultural crops,and plants in natural ecosystems.Global warming is likely to increase future O_(3)mainly by altering atmospheric photochemical reactions and enhancing biogenic volatile organic compound(BVOC)emissions.To assess the impacts of the future 1.5 K climate target on O_(3)concentrations and ecological O_(3)exposure in China,numerical simulations were conducted using the CMAQ(Community Multiscale Air Quality)model during April-October 2018.Ecological O_(3)exposure was estimated using six indices(i.e.,M7,M24,N100,SUM60,W126,and AOT40f).The results show that the temperature rise increases the MDA8 O_(3)(maximum daily eight-hour average O_(3))concentrations by∼3 ppb and the number of O_(3)exceedance days by 10-20 days in the North China Plain(NCP),Yangtze River Delta(YRD),and Sichuan Basin(SCB)regions.All O_(3)exposure indices show substantial increases.M24 and M7 in eastern and southern China will rise by 1-3 ppb and 2-4 ppb,respectively.N100 increases by more than 120 h in the surrounding regions of Beijing.SUM60 increases by greater than 9 ppm h^(−1),W126 increases by greater than 15 ppm h^(−1)in Shaanxi and SCB,and AOT40f increases by 6 ppm h^(−1)in NCP and SCB.The temperature increase also promotes atmospheric oxidation capacity(AOC)levels,with the higher AOC contributed by OH radicals in southern China but by NO_(3)radicals in northern China.The change in the reaction rate caused by the temperature increase has a greater influence on O_(3)exposure and AOC than the change in BVOC emissions.
基金supported by the Chinese-Norwegian Collaboration Projects within Climate Systems jointly funded by the National Key Research and Development Program of China (Grant No.2022YFE0106800)the Research Council of Norway funded project MAPARC (Grant No.328943)+2 种基金the support from the Research Council of Norway funded project BASIC (Grant No.325440)the Horizon 2020 project APPLICATE (Grant No.727862)High-performance computing and storage resources were performed on resources provided by Sigma2 - the National Infrastructure for High-Performance Computing and Data Storage in Norway (through projects NS8121K,NN8121K,NN2345K,NS2345K,NS9560K,NS9252K,and NS9034K)。
文摘To quantify the relative contributions of Arctic sea ice and unforced atmospheric internal variability to the “warm Arctic, cold East Asia”(WACE) teleconnection, this study analyses three sets of large-ensemble simulations carried out by the Norwegian Earth System Model with a coupled atmosphere–land surface model, forced by seasonal sea ice conditions from preindustrial, present-day, and future periods. Each ensemble member within the same set uses the same forcing but with small perturbations to the atmospheric initial state. Hence, the difference between the present-day(or future) ensemble mean and the preindustrial ensemble mean provides the ice-loss-induced response, while the difference of the individual members within the present-day(or future) set is the effect of atmospheric internal variability. Results indicate that both present-day and future sea ice loss can force a negative phase of the Arctic Oscillation with a WACE pattern in winter. The magnitude of ice-induced Arctic warming is over four(ten) times larger than the ice-induced East Asian cooling in the present-day(future) experiment;the latter having a magnitude that is about 30% of the observed cooling. Sea ice loss contributes about 60%(80%) to the Arctic winter warming in the present-day(future) experiment. Atmospheric internal variability can also induce a WACE pattern with comparable magnitudes between the Arctic and East Asia. Ice-lossinduced East Asian cooling can easily be masked by atmospheric internal variability effects because random atmospheric internal variability may induce a larger magnitude warming. The observed WACE pattern occurs as a result of both Arctic sea ice loss and atmospheric internal variability, with the former dominating Arctic warming and the latter dominating East Asian cooling.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB41000000)the National Natural Science Foundation of China(Grant No.42174101,41974023)+1 种基金the Open Fund of Hubei Luojia Laboratory(Grant No.S22H640201)(Germany)The Offshore International Science and Technology Cooperation Center of Frontier Technology of Geodesy。
文摘It is commonly believed that the atmosphere is decoupled from the solid Earth.Thus,it is difficult for the seismic wave energy inside the Earth to propagate into the atmosphere,and atmospheric pressure wave signals excited by earthquakes are unlikely to exist in atmospheric observations.An increasing number of studies have shown that earthquakes,volcanoes,and tsunamis can perturb the Earth's atmosphere due to various coupling effects.However,the observations mainly focus on acoustic waves with periods of less than 10 min and inertial gravity waves with periods of greater than 1 h.There are almost no clear observations of gravity waves that coincide with observations of low-frequency signals of the Earth's free oscillation frequency band within 1 h.This paper investigates atmospheric gravity wave signals within1 h of surface-atmosphere observations using the periodogram method based on seismometer and microbarometer observations from the global seismic network before and after the July 29,2021 M_(w)8.2 Alaska earthquake in the United States.The numerical results show that the atmospheric gravity wave signals with frequencies similar to those of the Earth's free oscillations _(0)S_(2) and _(0)T_(2) can be detected in the microbaro meter observations.The results con firm the existence of atmospheric gravity waves,indicating that the atmosphere and the solid Earth are not decoupled within this frequency band and that seismic wave energy excited by earthquakes can propagate from the interior of the Earth to the atmosphere and enhance the atmospheric gravity wave signals within 1 h.
基金the National Natural Science Foundation of China (21706075)Guangzhou Municipal Science and Technology Project (202201011269)
文摘The distribution of adsorbent particle sizes typically has a significant impact on adsorption performance.Most fixed-bed adsorption studies adopt the assumption of average particle size to simplify the adsorption model,but this does not eliminate the deviation between experiments and simulations caused by particle size distribution in practice.In this study,the population balance equation(PBE)and fixed-bed adsorption kinetics model were combined to simulate the adsorption process in a fixed-bed reactor,modeling the distribution of adsorbate uptake over time on adsorbent particles of different sizes.We integrated and optimized the PBE and fixed-bed mass transfer model in the algorithm,and the resulting combined model adopts a variable time step size,which can achieve a balance between computational efficiency and error while ensuring computational convergence.By slicing the model in the spatial dimension,multiple sets of PBE can be calculated in parallel,improving computational efficiency.The adsorption process of single-component and multi-component CO_(2)/CH_(4)/N_(2)on 4A zeolite without binder was simulated,and the influence of adsorbent particle size distribution was analyzed.Simulation results show that the assumption of average adsorbent particle size,which was commonly made in published work,will underestimate the time required for adsorbates to break through the fixed bed compared with the assumption of uniform adsorbent particle size.This model helps to consider the impact of adsorbent particle size distribution on the adsorption process,thereby improving the prediction accuracy of adsorbent performance.
基金supported by the National Natural Science Foundation of China(NSFCGrant No.42275061)+3 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB40000000)the Laoshan Laboratory(Grant No.LSKJ202202404)the NSFC(Grant No.42030410)the Startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology.
文摘A previously developed hybrid coupled model(HCM)is composed of an intermediate tropical Pacific Ocean model and a global atmospheric general circulation model(AGCM),denoted as HCMAGCM.In this study,different El Niño flavors,namely the Eastern-Pacific(EP)and Central-Pacific(CP)types,and the associated global atmospheric teleconnections are examined in a 1000-yr control simulation of the HCMAGCM.The HCMAGCM indicates profoundly different characteristics among EP and CP El Niño events in terms of related oceanic and atmospheric variables in the tropical Pacific,including the amplitude and spatial patterns of sea surface temperature(SST),zonal wind stress,and precipitation anomalies.An SST budget analysis indicates that the thermocline feedback and zonal advective feedback dominantly contribute to the growth of EP and CP El Niño events,respectively.Corresponding to the shifts in the tropical rainfall and deep convection during EP and CP El Niño events,the model also reproduces the differences in the extratropical atmospheric responses during the boreal winter.In particular,the EP El Niño tends to be dominant in exciting a poleward wave train pattern to the Northern Hemisphere,while the CP El Niño tends to preferably produce a wave train similar to the Pacific North American(PNA)pattern.As a result,different climatic impacts exist in North American regions,with a warm-north and cold-south pattern during an EP El Niño and a warm-northeast and cold-southwest pattern during a CP El Niño,respectively.This modeling result highlights the importance of internal natural processes within the tropical Pacific as they relate to the genesis of ENSO diversity because the active ocean–atmosphere coupling is allowed only in the tropical Pacific within the framework of the HCMAGCM.
基金supported by the National Natural Science Foundation of China(No.41907180).
文摘Using the observation data in Yongxing Island,South China Sea(SCS)from December 2013 to November 2018,the multiple time scales variation of atmospheric CO_(2)and CH_(4)were analyzed to understand their temporal variation characteristics and controlling factors.The regional-averaged background mole fractions of CO_(2)and CH_(4)both show a single-period sinusoidal variation with a lower value at noon and a higher value in the wee hours.In the seasonal scale,they exhibited a significant seasonal difference with higher values in winter and lower values in summer.In the annual scale,CO_(2)and CH_(4)both show an increasing trend,with an annual growth rate of approximately 3.2 ppm and 12 ppb,respectively.The annual growth rate at this site was higher than the global average.The change in atmospheric CO_(2)and CH_(4)in Yongxing Island was probably caused by the higher emission of the surrounding areas and the airflows driven by monsoon.Hopefully,the long-term and high-resolution greenhouse gases(GHGs)dataset will aid relevent researchers and decision-makers in performing more in-depth studies for GHG sources in order to derive effective strategies.
基金the National Key R&D Program of China(2023YFB3812901)the Postdoctoral Fellowship Program of CPSF(No.GZC20230239)+1 种基金the China Postdoctoral Science Foundation(No.2023M740219)the National Natural Science Foundation of China(No.22209094)。
文摘To study the atmospheric aging of acrylic coatings,a two-year aging exposure experiment was conducted in 13 representative climatic environments in China.An atmospheric aging evaluation model of acrylic coatings was developed based on aging data including11 environmental factors from 567 cities.A hybrid method of random forest and Spearman correlation analysis was used to reduce the redundancy and multicollinearity of the data set by dimensionality reduction.A semi-supervised collaborative trained regression model was developed with the environmental factors as input and the low-frequency impedance modulus values of the electrochemical impedance spectra of acrylic coatings in 3.5wt%NaCl solution as output.The model improves accuracy compared to supervised learning algorithms model(support vector machines model).The model provides a new method for the rapid evaluation of the aging performance of acrylic coatings,and may also serve as a reference to evaluate the aging performance of other organic coatings.
基金supported by the National Science Foundation of China(Grant No.42230606)。
文摘Here,a nonhydrostatic alternative scheme(NAS)is proposed for the grey zone where the nonhydrostatic impact on the atmosphere is evident but not large enough to justify the necessity to include an implicit nonhydrostatic solver in an atmospheric dynamical core.The NAS is designed to replace this solver,which can be incorporated into any hydrostatic models so that existing well-developed hydrostatic models can effectively serve for a longer time.Recent advances in machine learning(ML)provide a potential tool for capturing the main complicated nonlinear-nonhydrostatic relationship.In this study,an ML approach called a neural network(NN)was adopted to select leading input features and develop the NAS.The NNs were trained and evaluated with 12-day simulation results of dry baroclinic-wave tests by the Weather Research and Forecasting(WRF)model.The forward time difference of the nonhydrostatic tendency was used as the target variable,and the five selected features were the nonhydrostatic tendency at the last time step,and four hydrostatic variables at the current step including geopotential height,pressure in two different forms,and potential temperature,respectively.Finally,a practical NAS was developed with these features and trained layer by layer at a 20-km horizontal resolution,which can accurately reproduce the temporal variation and vertical distribution of the nonhydrostatic tendency.Corrected by the NN-based NAS,the improved hydrostatic solver at different horizontal resolutions can run stably for at least one month and effectively reduce most of the nonhydrostatic errors in terms of system bias,anomaly root-mean-square error,and the error of the wave spatial pattern,which proves the feasibility and superiority of this scheme.
文摘This study focuses on air quality in southern Benin in order to show public authorities what the Beninese populations are exposed to for efficient decision-making. Two sampling campaigns were carried out, one in the wet period and the other in the dry season. The measurements were taken using a monitor called an “Air Quality Monitor”. For data processing, the multiple comparison methods of Dun (1961) and the Wilcoxon test were used. To maintain legitimacy, all spatial data were included in the official cartographic repository of Benin: WGS 1984, Transverse Mercator Universe Projection (UTM), Zone 31 North. The Moran statistic was used to measure the levels of spatial autocorrelation of the variables studied and to test the significance. In order to locate the spatial subsets, the local spatial association indices of Anselin Local Moran and Getis-Ord, Gi* were used. In terms of results, on the 13 monitoring sites and the 8 parameters chosen to determine air quality, we do not note any significant inter-seasonal difference. Of the eight parameters, only three parameters present spatial autocorrelation leading to predictions of ambient air quality over the entire study area based on the distance separating the points, namely, PM<sub>2.5</sub>, PM<sub>10</sub> and ambient air quality index (AQI). The localities affected by atmospheric pollution in South Benin are located in the south-western part of Benin, headed by Cotonou, which is heavily polluted by CO<sub>2</sub>, TCOV, PM<sub>10</sub> and PM<sub>2.5</sub>.
基金National Natural Science Foundation of China for Exploring Key Scientific Instrument(No.41827805)the Open Funds of the State Key Laboratory of Rare Earth Resource Utilization(No.RERU2021017)Hainan Province Science and Technology Special Fund(ZDYF2021GXJS210)for providing support。
文摘The microstructure and precipitated phases of as-cast Mg-5Y-1.5Nd-x Zn-0.5Zr(x=0,2,4,6 wt.%)alloys were investigated by optical microscopy,scanning electron microscopy,energy-dispersive spectrometry and X-ray Diffraction.The exposure corrosion experiment of these magnesium alloys was tested in South China Sea and KEXUE vessel atmospheric environment.The corrosion characteristic and mechanism of magnesium alloys of Mg-5Y-1.5Nd-x Zn-0.5Zr(x=0,2,4,6 wt.%)alloys were analyzed by weight loss rate,corrosion depth,corrosion products and corrosion morphologies.The electrochemical corrosion tests were also measured in the natural seawater.The comprehensive results showed that Mg-5Y-1.5Nd-4Zn-0.5Zr magnesium alloy existed the best corrosion resistance whether in the marine atmospheric environment and natural seawater environment.That depended on the microstructure,type and distribution of precipitated phases in Mg-5Y-1.5Nd-4Zn-0.5Zr magnesium alloy.Sufficient quantity anodic precipitated phases in the microstructure of Mg-5Y-1.5Nd-4Zn-0.5Zr alloy played the key role in the corrosion resistance.
基金supported by 173 Program of China,and National Natural Science Foundation of China(No.92271116).
文摘In this work,a gas-solid two-phase gliding arc discharge(GS-GAD)reactor was built.Gliding arc was formed in the gap between the blade electrodes,and solid powder was deposited on the sieve plate positioned beneath the blade electrodes.A range of experimental parameters,including the inter-electrode spacing,gas flow rate,applied voltage,and the type of the powder,were systematically varied to elucidate the influence of solid powder matter on the dynamics of gliding arc discharge(GAD).The discharge images were captured by ICCD and digital camera to investigate the mass transfer characteristics of GS-GAD,and the electrical parameters,such as the effective values of voltage,current,and discharge power were record to reveal the discharge characteristics of GS-GAD.The results demonstrate that powder undergoes spontaneous movement towards the upper region of the gliding arc due to the influence of electric field force.Increasing the discharge voltage,decreasing relative dielectric constant of the powder and reducing the electrode-to-sieve-plate distance all contribute to a greater involvement of powder in the GAD process,subsequently resulting in an enhanced powder concentration within the GAD region.Additionally,powder located beneath the gliding arc experiences downward resistance caused by the opposing gas flow and arc.Excessive gas flow rate notably hampers the powder concentration within the discharge region,and the velocity of powder motion in the upper part of the GAD region is reduced.Under the condition of electrode-to-sieve-plate distance of 30 mm,gas flow rate of 1.5 L/min,and peak-to-peak voltage of 31 kV,the best combination of arc gliding and powder spark discharge phenomena can be achieved with the addition of Al_(2)O_(3) powder.
基金National Natural Science Foundation of China(42175014,42205137)Open Research Fund of Institute of Meteorological Technology Innovation,Nanjing(BJG202202)+3 种基金Joint Research Project of Typhoon Research,Shanghai Typhoon Institute,China Meteorological Administration(TFJJ202209)Innovation Development Project of China Meteorological Administration(CXFZ2023P001)Open Project of KLME&CIC-FEMD(KLME202311)Jiangxi MDIA-ASI Fund。
文摘Based on the lightning observation data from the Fengyun-4A(FY-4A)Lightning Mapping Imager(FY-4A/LMI)and the Lightning Imaging Sensor(LIS)on the International Space Station(ISS),we extract the“event”type data as the lightning detection results.These observations are then compared with the cloud-to-ground(CG)lightning observation data from the China Meteorological Administration.This study focuses on the characteristics of lightning activity in Southeast China,primarily in Jiangxi Province and its adjacent areas,from April to September,2017–2022.In addition,with the fifth-generation European Centre for Medium-Range Weather Forecasts reanalysis data,we further delved into the potential factors influencing the distribution and variations in lightning activity and their primary related factors.Our findings indicate that the lightning frequency and density of the FY-4A/LMI,ISS-LIS and CG data are higher in southern and central Jiangxi,central Fujian Province,and western and central Guangdong Province,while they tend to be lower in eastern Hunan Province.In general,the high-value areas of lightning density for the FY-4A/LMI are located in inland mountainous areas.The lower the latitude is,the higher the CG lightning density is.High-value areas of the CG lightning density are more likely to be located in eastern Fujian and southeastern Zhejiang Province.However,the high-value areas of lightning density for the ISS-LIS are more dispersed,with a scattered distribution in inland mountainous areas and along the coast of eastern Fujian.Thus,the mountainous terrain is closely related to the high-value areas of the lightning density.The locations of the high-value areas of the lightning density for the FY-4A/LMI correspond well with those for the CG observations,and the seasonal variations are also consistent.In contrast,the distribution of the high-value areas of the lightning density for the ISS-LIS is more dispersed.The positions of the peak frequency of the FY-4A/LMI lightning and CG lightning contrast with local altitudes,primarily located at lower altitudes or near mountainsides.K-index and convective available potential energy(CAPE)can better reflect the local boundary layer conditions,where the lightning density is higher and lightning seasonal variations are apparent.There are strong correlations in the annual variations between the dew-point temperature(Td)and CG lightning frequency,and the monthly variations of the dew-point temperature and CAPE are also strongly correlated with monthly variations of CG lightning,while they are weakly correlated with the lightning frequency for the FY-4A/LMI and ISS-LIS.This result reflects that the CAPE shows a remarkable effect on the CG lightning frequency during seasonal transitions.
基金the National Key Research and Development Program of China(Grant No.2022YFE0106500)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.2022076)+1 种基金the National Key Scientific and Technological Infrastructure project“Earth System Numerical Simulation Facility”(EarthLab2023-EL-ZD-00012)。
文摘The atmospheric carbon dioxide(CO_(2))concentration has been increasing rapidly since the Industrial Revolution,which has led to unequivocal global warming and crucial environmental change.It is extremely important to investigate the interactions among atmospheric CO_(2),the physical climate system,and the carbon cycle of the underlying surface for a better understanding of the Earth system.Earth system models are widely used to investigate these interactions via coupled carbon-climate simulations.The Chinese Academy of Sciences Earth System Model version 2(CAS-ESM2.0)has successfully fixed a two-way coupling of atmospheric CO_(2)with the climate and carbon cycle on land and in the ocean.Using CAS-ESM2.0,we conducted a coupled carbon-climate simulation by following the CMIP6 proposal of a historical emissions-driven experiment.This paper examines the modeled CO_(2)by comparison with observed CO_(2)at the sites of Mauna Loa and Barrow,and the Greenhouse Gases Observing Satellite(GOSAT)CO_(2)product.The results showed that CAS-ESM2.0 agrees very well with observations in reproducing the increasing trend of annual CO_(2)during the period 1850-2014,and in capturing the seasonal cycle of CO_(2)at the two baseline sites,as well as over northern high latitudes.These agreements illustrate a good ability of CAS-ESM2.0 in simulating carbon-climate interactions,even though uncertainties remain in the processes involved.This paper reports an important stage of the development of CAS-ESM with the coupling of carbon and climate,which will provide significant scientific support for climate research and China’s goal of carbon neutrality.
基金Funded by the National Natural Science Foundation of China(Nos.52178428,52178427,and 52308454)the Science and Technology Project of Tibet Department of Transportation(No.XZJTKJ[2020]04)。
文摘In order to ascertain the effects of atmospheric pressure on developmental characteristics and the stability of AEA(air-entraining agent)solution bubbles,AEA solution experiments and AEA solution bubble experiments were,respectively,conducted in Peking(50 m,101.2 kPa)and Lhasa(3,650 m,63.1 kPa).Surface tensions and inflection-point concentrations were tested based on AEA solutions,whilst developmental characteristics,thicknesses and elastic coefficients of liquid films were tested based on air bubbles of AEA solutions.The study involved three types of AEAs,which were TM-O,226A,and 226S.The experimental results show that initial sizes of TM-O,226A,and 226S are,respectively,increased by 43.5%,17.5%,and 3.8%.With the decrease of ambient pressure,the drainage rate and the drainage index of AEA solution bubbles increase.Interference experiments show that the liquid film thicknesses of all tested AEA solution bubbles are in micron scales.When the atmospheric pressure decreases from 101.2 to 63.1 kPa,the liquid film thicknesses of three types of AEA solutions decrease in various degrees;and film elasticities at critical thicknesses increase.Liquid film of 226S solution bubbles is the most stable,presenting as a minimum thickness variation.It should be noted that elastic coefficient of liquid film only represents the level at critical thickness,thus it can not be applied as the only evaluating indicator of bubble stability.For a type of AEA,factors affecting the stability of its bubbles under low atmospheric pressure include initial bubbles size,liquid film thickness,liquid film elasticity,ambient temperature,etc.
文摘In high-altitude nuclear detonations,the proportion of pulsed X-ray energy can exceed 70%,making it a specific monitoring signal for such events.These pulsed X-rays can be captured using a satellite-borne X-ray detector following atmospheric transmission.To quantitatively analyze the effects of different satellite detection altitudes,burst heights,and transmission angles on the physical processes of X-ray transport and energy fluence,we developed an atmospheric transmission algorithm for pulsed X-rays from high-altitude nuclear detonations based on scattering correction.The proposed method is an improvement over the traditional analytical method that only computes direct-transmission X-rays.The traditional analytical method exhibits a maximum relative error of 67.79% compared with the Monte Carlo method.Our improved method reduces this error to within 10% under the same conditions,even reaching 1% in certain scenarios.Moreover,its computation time is 48,000 times faster than that of the Monte Carlo method.These results have important theoretical significance and engineering application value for designing satellite-borne nuclear detonation pulsed X-ray detectors,inverting nuclear detonation source terms,and assessing ionospheric effects.
基金Under the auspices of National Natural Science Foundation(No.42077328)。
文摘Atmospheric Brown Carbon(BrC)with strong wavelength-dependence light-absorption ability can significantly affect radiative forcing.Highly resolved emission inventories with lower uncertainties are important premise and essential in scientifically evaluating impacts of emissions on air quality,human health and climate change.This study developed a bottom-up inventory of primary BrC from combustion sources in China from 1960 to 2016 with a spatial resolution at 0.1°×0.1,based on compiled emission factors and detailed activity data.The primary BrC emission in China was about 593 Gg(500-735 Gg as interquartile range)in 2016,contributing to 7%(5%-8%)of a previously estimated global total BrC emission.Residential fuel combustion was the largest source of primary BrC in China,with the contribution of 67%as the national average but ranging from 25%to 99%among different provincial regions.Signi-ficant spatial disparities were also observed in the relative shares of different fuel types.Coal combustion contribution varied from 8%to 99%across different regions.Heilongjiang and North China Plain had high emissions of primary BrC.Generally,on the national scale,spatial distribution of BrC emission density per area was aligned with the population distribution.Primary BrC emission from combustion sources in China have been declined since a peak of~1300 Gg in 1980,but the temporal trends were distinct in different sectors.The high-resolution inventory developed here enables radiative forcing simulations in future atmospheric models so as to promote better understanding of carbonaceous aerosol impacts in the Earth's climate system and to develop strategies achieving co-benefits of hu-man health protection and climate change.
基金supported by The Second Tibetan Plateau Scientific Expedition and Research(STEP)program(2019QZKK0105)the National Natural Science Foundation of China(91437221,91837204).
文摘This study compares the summer atmospheric water cycle,including moisture sources and consumption,in the upstream,midstream,and downstream regions of the Yarlung Zangbo River Basin in the southern Tibetan Plateau.The evolutions of moisture properties under the influence of the westerly and summer southerly monsoon are examined using 5-yr multi-source measurements and ERA5 reanalysis data.Note that moisture consumption in this study is associated with clouds,precipitation,and diabatic heating.Compared to the midstream and downstream regions,the upstream region has less moisture,clouds,and precipitation,where the moisture is brought by the westerly.In early August,the vertical wet advection over this region becomes enhanced and generates more high clouds and precipitation.The midstream region has moisture carried by the westerly in June and by the southerly monsoon from July to August.The higher vertical wet advection maximum here forms more high clouds,with a precipitation peak in early July.The downstream region is mainly affected by the southerly-driven wet advection.The rich moisture and strong vertical wet advection here produce the most clouds and precipitation among the three regions,with a precipitation peak in late June.The height of the maximum moisture condensation is different between the midstream region(325 hPa)and the other two regions(375 hPa),due to the higher upward motion maximum in the midstream region.The diabatic heating structures show that stratiform clouds dominate the upstream region,stratiform clouds and deep convection co-exist in the midstream region,and deep convection systems characterize the downstream region.