In this paper, the principle to determine the atmospheric columnar Mie optical depth from downward total solar radiative flux is theoretically studied, and the effect on Mie optical depth solution of the errors in sur...In this paper, the principle to determine the atmospheric columnar Mie optical depth from downward total solar radiative flux is theoretically studied, and the effect on Mie optical depth solution of the errors in surface albedo, sin-gle scattering albedo, asymmetrical factor of scattering phase function, instrumental constant and the approximate expression of diffusion flux is analy/ed, and then a method for determining surface albedo in shorter wavelength range is presented.展开更多
This paper proposed a method to retrieve the land surface reflectance from the HJ-1A/B CCD data. The aerosol optical depth(AOD), the most important factor affecting the atmospheric correction of CCD images at all ba...This paper proposed a method to retrieve the land surface reflectance from the HJ-1A/B CCD data. The aerosol optical depth(AOD), the most important factor affecting the atmospheric correction of CCD images at all bands, is proposed to retrieve from the CCD imagery by the approach of dense dark vegetation(DDV) method. A look-up table in terms of the transmittances, the path radiances and the atmospheric spherical albedo as functions of the AOD was established for a variety of sun-sensor geometry and aerosol loadings. The atmospheric correction is then achieved with the look-up table and the MODIS surface reflectance output(MOD09) as the priori datasets. Based on the retrieved AOD and the look-up table of atmospheric correction coefficients, the land surface reflectance was retrieved for the HJ-1A/B data according to the atmospheric radiative transfer equation. Some in-situ measurement Data for Yanzhou of Shandong province in East China and MODIS land surface reflectance products MOD09 are used to preliminarily validate the proposed method. The results show that the proposed method can remove effectively the atmospheric contributions, and the overall accuracy of the retrieval land surface reflectance can be improved substantially.展开更多
文摘In this paper, the principle to determine the atmospheric columnar Mie optical depth from downward total solar radiative flux is theoretically studied, and the effect on Mie optical depth solution of the errors in surface albedo, sin-gle scattering albedo, asymmetrical factor of scattering phase function, instrumental constant and the approximate expression of diffusion flux is analy/ed, and then a method for determining surface albedo in shorter wavelength range is presented.
基金National High Technology Research and Development Program of China,No.2012AA12A302
文摘This paper proposed a method to retrieve the land surface reflectance from the HJ-1A/B CCD data. The aerosol optical depth(AOD), the most important factor affecting the atmospheric correction of CCD images at all bands, is proposed to retrieve from the CCD imagery by the approach of dense dark vegetation(DDV) method. A look-up table in terms of the transmittances, the path radiances and the atmospheric spherical albedo as functions of the AOD was established for a variety of sun-sensor geometry and aerosol loadings. The atmospheric correction is then achieved with the look-up table and the MODIS surface reflectance output(MOD09) as the priori datasets. Based on the retrieved AOD and the look-up table of atmospheric correction coefficients, the land surface reflectance was retrieved for the HJ-1A/B data according to the atmospheric radiative transfer equation. Some in-situ measurement Data for Yanzhou of Shandong province in East China and MODIS land surface reflectance products MOD09 are used to preliminarily validate the proposed method. The results show that the proposed method can remove effectively the atmospheric contributions, and the overall accuracy of the retrieval land surface reflectance can be improved substantially.