Atmospheric pressure plasma jet shows great potential for polymer film processing. The electrode geometry is the key factor to determine discharge characteristics and film modification of jets. In this paper, we compa...Atmospheric pressure plasma jet shows great potential for polymer film processing. The electrode geometry is the key factor to determine discharge characteristics and film modification of jets. In this paper, we compared the discharge characteristics and the film modifications of atmospheric pressure plasma jets with needle-ring electrode(NRE) and doublering electrode(DRE). The results show that jet with NRE has stronger electric field intensity and higher discharge power,making it present more reactive oxygen particles and higher electron temperature, but its discharge stability is insufficient.In contrast, the jet with DRE has uniform electric field distribution of lower field intensity, which allows it to maintain stable discharge over a wide range of applied voltages. Besides, the modification results show that the treatment efficiency of PET film by NRE is higher than that by DRE. These results provide a suitable atmospheric pressure plasma jets device selection scheme for polymer film processing process.展开更多
Acrylic polyurethane paint on the surface of 2A12 Al alloy was cleaned utilizing an atmospheric pressure plasma jet in this work.The dynamic evolution of the paint removal process during plasma treatment with time was...Acrylic polyurethane paint on the surface of 2A12 Al alloy was cleaned utilizing an atmospheric pressure plasma jet in this work.The dynamic evolution of the paint removal process during plasma treatment with time was explored through analysis of morphology and chemical states.The results showed that although the thickness of paint could be reduced effectively with an increase in cleaning time,the removal rate of paint gradually decreased with time.During the initial cleaning process range,its original smooth morphology of paint turned rugged quickly and was almost unchanged with further plasma treatment.Element and chemical state analysis showed that the content of C in the paint layer decreased obviously after plasma treatment.In contrast,the O content increased remarkably.The cleaning mechanism could be mainly attributed to the reaction between active O-containing species in air plasma and organic components in the paint.After removal of superficial organic matter,residue inorganic metal oxide substances aggregated on the base.The exposed metal oxides on the one hand elevated the superficial O content,but on the other hand hindered further plasma penetration,resulting in a gradual decrease in cleaning rate with cleaning time.Therefore,physical wiping was proposed to be incorporated with the plasma method and effective removal of paint was realized.展开更多
Atmospheric fluorocarbon plasma plays an important role in the surface modification of insulating materials like polymers.The existing fluorocarbon plasma is usually generated by dielectric barrier discharge,which has...Atmospheric fluorocarbon plasma plays an important role in the surface modification of insulating materials like polymers.The existing fluorocarbon plasma is usually generated by dielectric barrier discharge,which has a low concentration of reactive species and may cause insufficient surface fluorination.This work attempts to develop an atmospheric fluorocarbon plasma jet using a coaxial transmission line resonator by microwave discharge with locally enhanced electric field and high density.The gas temperature is reduced by pulse modulation technology.Three kinds of working gases,pure CF_(4),Ar/CF_(4)and He/CF_(4),are utilized to generate the atmospheric microwave fluorocarbon plasma jet.The discharge images,optical emission spectra,electron densities and gas temperatures are studied experimentally.The results show that the Ar/CF_(4)plasma jet has the best comprehensive performance,such as strong discharge intensity and controllable gas temperature.The electron density of the Ar/CF_4plasma jet has a magnitude of 10~(20)m^(-3),indicating a higher density than that of the frequently used dielectric barrier discharge.With the other conditions unchanged,the gas temperature at the end of the Ar/CF_(4)plasma jet can be reduced from 410.2 to 347.3 K by decreasing the duty cycle of the modulated pulse from 0.5 to 0.1.Thence,the microwave Ar/CF_(4)plasma jet is considered to be a promising fluorocarbon plasma source for surface fluorination of polymers.展开更多
A coaxial dielectric barrier discharge plasma jet was designed, which can be operated in atmospheric pressure argon under an intermediate frequency sinusoidal resonant power supply, and an atmospheric pressure glow-li...A coaxial dielectric barrier discharge plasma jet was designed, which can be operated in atmospheric pressure argon under an intermediate frequency sinusoidal resonant power supply, and an atmospheric pressure glow-like discharge was achieved. Two kinds of typical bacteria, i.e., the Staphylococcus aureus (S. aureus) and Escherichia coil (E. coil), were employed to study the bacterial inactivation mechanism by means of the non-thermal plasma. The killing log value (KLV) of S. aureus reached up to 5.38 with a treatment time of 90 s and that of E. coil up to 5.36 with 60 s, respectively. According to the argon emission spectra of the plasma jet and the scanning electron microscope (SEM) images of the two bacteria before and after the plasma treatment, it is concluded that the reactive species in the argon plasma played a major role in the bacterial inactivation, while the heat, electric field and UV photons had little effect.展开更多
An atmospheric pressure nonequilibrium argon/oxygen plasma jet assisted by the preionization of syringe needle electrode discharge is reported. With the syringe needle plasma as its pre-ionization source, the hybrid b...An atmospheric pressure nonequilibrium argon/oxygen plasma jet assisted by the preionization of syringe needle electrode discharge is reported. With the syringe needle plasma as its pre-ionization source, the hybrid barrier-jet was shown to generate uniform discharge with a lower breakdown voltage and a relatively low gas temperature varying from 390 K to 440 K, even when the vol.% oxygen in argon was up to 6%. Utilizing the actinometry method, the concentration of atomic oxygen was estimated to be about in an orders of magnitude of 10^17 cm^-3. The argon/oxygen plasma jet was then employed to clean out heat transfer oil, with a maximum cleaning rate of 0.1 mm/s achieved.展开更多
An atmospheric pressure plasma jet generated in Ar and O2/Ar mixtures has been investigated by specially designed equipment with double power electrodes at 20~32 kHz, and their effects on the cleaning of surfaces have...An atmospheric pressure plasma jet generated in Ar and O2/Ar mixtures has been investigated by specially designed equipment with double power electrodes at 20~32 kHz, and their effects on the cleaning of surfaces have been studied. Properties of the jet discharge are studied by electrical diagnostics, including the waveform of discharge voltage, discharge current and the Q-V Lissajous figures. The optical emission spectroscopy is used to measure the plasma parameters, such as the excitation temperature and the gas temperature. It is found that the consumed power and the excitation temperature increase with increase of the discharge frequency. On the other hand, at the same discharge frequency, these parameters in O2/Ar mixture plasma are found to be much larger. The effect on surface cleaning is studied from the changes in the contact angle. For Ar plasma jet, the contact angle decreases with increase of the discharge frequency. For O2/Ar mixture plasma jet, the contact angle decreases with increase of discharge frequency up to 26 kHz, however, further increase of discharge frequency does not show further decrease in the contact angle. At the same discharge frequency, the contact angle after O2/Ar mixture plasma cleaning is found to be much lower compared to the case of pure Ar. From the results of quadrupole mass-spectrum analysis, we can identify more fragment molecules of CO and H2O in the emitted gases after O2/Ar plasma jet treatment compared with Ar plasma jet treatment, which are produced by the decomposition of surface organic contaminants during the cleaning process.展开更多
The sterilizing effect of the non-equilibrium atmospheric pressure plasma jet by applying it to the Bacillus subtilis spores is invesigated. A stable glow discharge in argon or helium gas fed with active gas (oxygen...The sterilizing effect of the non-equilibrium atmospheric pressure plasma jet by applying it to the Bacillus subtilis spores is invesigated. A stable glow discharge in argon or helium gas fed with active gas (oxygen), was generated in the coaxial cylindrical reactor powered by the radio-frequency power supply at atmospheric pressure. The experimental results indicated that the efficiency of killing spores by making use of an Ar/O2 plasma jet was much better than with a He/O2 plasma jet. The decimal reduction value of Ar/O2 and He/O2 plasma jets under the same experimental conditions was 4.5 seconds and 125 seconds, respectively. It was found that there exists an optimum oxygen concentration for a certain input power, at which the sterilization efficiency reaches a maximum value. It is believed that the oxygen radicals are generated most efficiently under this optimum condition.展开更多
Electrical and optical properties of an argon plasma jet were characterized. In particular, effects of an additive gas, namely nitrogen or oxygen, on these properties were studied in detail. The plasma jet was found t...Electrical and optical properties of an argon plasma jet were characterized. In particular, effects of an additive gas, namely nitrogen or oxygen, on these properties were studied in detail. The plasma jet was found to be of a glow-like discharge, which scarcely changed upon the injection of an additive gas, either directly or through a glass capillary. Optical emission spectroscopy characterization revealed that excited argon atoms were the predominant active species in this plasma jet. Metastable argon atoms were highly quenched, and N2(C3yIu) became the main energy carrier following nitrogen injection. When oxygen was added to the afterglow zone through a glass capillary, no significant quenching effect was observed and the number of oxygen atoms decreased with the increase in oxygen concentration. Finally, to demonstrate an application of this plasma jet, a high-density polyethylene surface was treated with argon, argon/nitrogen, and argon/oxygen plasmas.展开更多
This paper reports that an atmospheric pressure dielectric barrier discharge plasma jet, which uses argon or argon + hydrogen peroxide vapour as the working gas, is designed to sterilize the bacillus subtilis. Compar...This paper reports that an atmospheric pressure dielectric barrier discharge plasma jet, which uses argon or argon + hydrogen peroxide vapour as the working gas, is designed to sterilize the bacillus subtilis. Compared with the pure argon plasma, the bacterial inactivation efficacy has a significant improvement when hydrogen peroxide vapour is added into the plasma jet. In order to determine which factors play the main role in inactivation, several methods are used, such as determination of optical emission spectra, high temperature dry air treatment, protein leakage quantification, and scanning electron microscope. These results indicate that the possible inactivation mechanisms are the synergistic actions of chemically active species and charged species.展开更多
This study investigates the influence of two types of target,skin tissue and cell culture medium,with different permittivities on a k Hz helium atmospheric pressure plasma jet(APPJ)during its application for wound hea...This study investigates the influence of two types of target,skin tissue and cell culture medium,with different permittivities on a k Hz helium atmospheric pressure plasma jet(APPJ)during its application for wound healing.The basic optical-electrical characteristics,the initiation and propagation and the emission spectra of the He APPJ under different working conditions are explored.The experimental results show that,compared with a jet freely expanding in air,the diameter and intensity of the plasma plume outside the nozzle increase when it interacts with the pigskin and cell culture medium targets,and the mean velocity of the plasma bullet from the tube nozzle to a distance of 15 mm is also significantly increased.There are also multiple increases in the relative intensity of OH(A^(2)Σ→X^(2)Π)and O(3p^(5)S-3s^(5)S)at a position 15 mm away from nozzle when the He APPJ interacts with cell culture medium compared with the air and pigskin targets.Taking the surface charging of the low permittivity material capacitance and the strengthened electric field intensity into account,they make the various characteristics of He APPJ interacting with two different targets together.展开更多
In order to form an atmospheric-pressure plasma jet without airflow, a needle–ring electrode structure is proposed in this paper. When heteropolar potentials are applied to a needle and a ring, a marked electric fiel...In order to form an atmospheric-pressure plasma jet without airflow, a needle–ring electrode structure is proposed in this paper. When heteropolar potentials are applied to a needle and a ring, a marked electric field strength enhancement around the needle’s pointed end has been found. When the same potential is applied to both the needle and the ring, the lateral electric field strength for the needle can be weakened. By using the above two methods, an increase of the difference between the pointed end electric field strength and the lateral one is achieved and stable plasma jets are formed. A symmetrical space electric field distribution is established at the pointed end of the needles when several sets of heteropolar needle–ring electrodes are uniformly arranged, which is conducive to forming a uniform array plasma jet. Under DC discharge conditions, a safe and stable plasma jet of high density and an array plasma jet are successfully achieved.展开更多
Atmospheric pressure plasma jet(APPJ)was used to clean nitrogen-containing carbon films(C–N)fabricated by plasma-assisted chemical vapor deposition method employing the plasma surface interaction linear device at Sic...Atmospheric pressure plasma jet(APPJ)was used to clean nitrogen-containing carbon films(C–N)fabricated by plasma-assisted chemical vapor deposition method employing the plasma surface interaction linear device at Sichuan University(SCU-PSI).The properties of the contaminated films on the surface of pristine and He-plasma pre-irradiated tungsten matrix,such as morphology,crystalline structure,element composition and chemical structure were characterized by scanning electron microscopy,grazing incidence x-ray diffraction and x-ray photoelectron spectroscopy.The experimental results revealed that the removal of C–N film with a thickness of tens of microns can be realized through APPJ cleaning regardless of the morphology of the substrates.Similar removal rates of 16.82 and 13.78μm min^(-1)were obtained for C–N films deposited on a smooth pristine W surface and rough fuzz-covered W surface,respectively.This is a remarkable improvement in comparison to the traditional cleaning method.However,slight surface oxidation was found after APPJ cleaning,but the degree of oxidation was acceptable with an oxidation depth increase of only 3.15 nm.Optical emission spectroscopy analysis and mass spectrometry analysis showed that C–N contamination was mainly removed through chemical reaction with reactive oxygen species during APPJ treatment using air as the working gas.These results make APPJ cleaning a potentially effective method for the rapid removal of C–N films from the wall surfaces of fusion devices.展开更多
To compare the formation mechanisms of He and Ar atmospheric pressure plasma jets(APPJs),an intensified charge-coupled device(ICCD)are utilized to observe the dynamic process of APPJ.The experimental results show that...To compare the formation mechanisms of He and Ar atmospheric pressure plasma jets(APPJs),an intensified charge-coupled device(ICCD)are utilized to observe the dynamic process of APPJ.The experimental results show that,He APPJ is first ignited,which is independent of the dielectric barrier discharge(DBD)between the two wrapped electrodes when the high voltage placed at the downstream.The intensity and APPJ length under positive discharge pulses are bigger than that under negative discharge pulses due to the space charge effect.The He APPJ is formed by the DBD development when the high-voltage electrode placed at the upstream side of tube.However,the plasma plume in Ar APPJ is formed by the propagation of DBD whatever the high-voltage electrode is arranged on upstream or downstream side of ground electrode.The difference in formation mechanism between He and Ar APPJs is mainly caused by the gas properties.Moreover,during the discharges,Ar tends to lead to thermal instability and electron Maxwellian instability.展开更多
In this study,a high-density polyethylene(HDPE,5-mm-thick,0.95 g/cm3) surface was treated using an RF capacitive atmospheric pressure cold Ar plasma jet.By using this Ar plasma jet,a hydrophilic HDPE surface was for...In this study,a high-density polyethylene(HDPE,5-mm-thick,0.95 g/cm3) surface was treated using an RF capacitive atmospheric pressure cold Ar plasma jet.By using this Ar plasma jet,a hydrophilic HDPE surface was formed during the plasma treatment.In particular, the effects of an additive gas(N;or O2) on the HDPE surface treatment were investigated in detail.It was shown that the addition of N2 or O2 gas had an important influence on the HDPE surface treatment.Compared to pure Ar plasma treatment,a lower value of water contact angle (WCA) was obtained when a trace of N2 or O2 gas was added.It was also found that besides the quantities of active species in the plasma jet,the treatment temperature played an important role in the HDPE surface treatment.This is because surface molecular motion is not negligible when the treatment temperature is close to the melting point of the polymer.展开更多
The sterilization of the simulated unearthed silk fabrics using an atmospheric pressure plasma jet(APPJ) system employing Ar/O2 or He/O2 plasma to inactivate the mycete attached on the silk fabrics is reported. The ...The sterilization of the simulated unearthed silk fabrics using an atmospheric pressure plasma jet(APPJ) system employing Ar/O2 or He/O2 plasma to inactivate the mycete attached on the silk fabrics is reported. The effects of the APPJ characteristics(particularly the gas type and discharge power) on the fabric strength, physical-chemical structures,and sterilizing efficiency were investigated. Experimental results showed that the Ar/O2 APPJ plasma can inactivate the mycete completely within 4.0 min under a discharge power of 50.0 W. Such an APPJ treatment had negligible impact on the mechanical strength of the fabric and the surface chemical characteristics. Moreover, the Ar ions, O and OH radicals were shown to play important roles on the sterilization of the mycete attached on the unearthed silk fabrics.展开更多
A low power atmospheric pressure plasma jet driven by a 24 kHz AC power source and operated with a CH4/air gas mixture has been investigated by optical emission spectrometer. The plasma parameters including the electr...A low power atmospheric pressure plasma jet driven by a 24 kHz AC power source and operated with a CH4/air gas mixture has been investigated by optical emission spectrometer. The plasma parameters including the electron excitation temperature, vibrational temperature and rotational temperature of the plasma jet at different discharge powers are diagnosed based on the assumption that the kinetic energy of the species obeys the Boltzmann distribution. The electron density at different power is also investigated by HS Stark broadening. The results show that the plasma source works under non-equilibrium conditions. It is also found that the vibrational temperature and rotational temperat;ure increase with discharge power, whereas the electron excitation temperature seems to have a downward trend. The electron density increases from 0.8×10^21 m^-3 to 1.1×10^21 m^-3 when the discharge power increases from 53 W to 94 W.展开更多
Ar/CH3OH and Ar/N2/CH3OH plasma jets were generated at atmospheric pressure by dual-frequency excitations. Two different cases were studied with focus laid on the generation of CN radicals. In one case Ar gas passed t...Ar/CH3OH and Ar/N2/CH3OH plasma jets were generated at atmospheric pressure by dual-frequency excitations. Two different cases were studied with focus laid on the generation of CN radicals. In one case Ar gas passed through a bubbler with saturated methanol steam but without addition of N2 (Ar/CH3OH plasma). In the other case N2 passed through the bubbler with saturated methanol steam (Ar/N2/CH3OH plasma). The optical emission lines of CN radicals have been observed in these two cases of plasma discharges. The addition of N2 can significantly increase the optical emission intensity of CN bands.展开更多
Three-electrode plasma jet system consisting of a perforated dielectric tube with two outer and one floating inner electrodes was developed and employed for nano-coating processes of Si [1 0 0] wafer. Lowered gas brea...Three-electrode plasma jet system consisting of a perforated dielectric tube with two outer and one floating inner electrodes was developed and employed for nano-coating processes of Si [1 0 0] wafer. Lowered gas breakdown voltage, increasing plasma density and increased discharge current were achieved by using the floating inner electrode. The low temperature (Nonthermal) Atmospheric Pressure Plasma protective coating technique using precursor-containing gases (Ar, O2 and OMCTS mixture) which injected into Plasma Jet (APPJ), there are several techniques are introduced here to avoid substrate damage including increasing plasma density without increasing the kinetic energy of the ion bombardment. Furthermore some few precautions are given here to insure good media for silicon wafer prepared for coating.展开更多
Non-thermal plasma jet at atmospheric pressure has recently attracted lots of attention because of its applications in plasma bullet or plasma plume.Thus,we studied on generating plasma jet by coplanar dielectric barr...Non-thermal plasma jet at atmospheric pressure has recently attracted lots of attention because of its applications in plasma bullet or plasma plume.Thus,we studied on generating plasma jet by coplanar dielectric barrier discharge in a device driven by sinusoidal voltage.The processes of plasma discharges in both positive and negative half cycles were recorded using a high-speed ICCD(intensified charge-coupled device)camera;based on the results we estimated the velocity of plasma propagation,and investigated the influence of gas flow on the plasma development.It is shown that the plasma bullets,which have velocity in the order of 103~104m/s,exist only outside the cathode.APPJ(atmospheric pressure plasma jet)is created by the electron beam from the cathode,and then sustained by a strong radial electric field near and outside the cathode.The gas flow influences the APPJ length in air but not the APPJ discharge,while the discharge is affected significantly by the applied voltage.展开更多
Electric field is an important parameter of plasma,which is related to electron temperature,electron density,excited species density,and so on.In this work,the electric field of an atmospheric pressure plasma jet is d...Electric field is an important parameter of plasma,which is related to electron temperature,electron density,excited species density,and so on.In this work,the electric field of an atmospheric pressure plasma jet is diagnosed by the electric field induced second harmonic(E-FISH)method,and the time-resolved electric field under different conditions is investigated.When positive pulse voltage is applied,the electric field has a peak of about 25 kV cm-1at the rising edge of the voltage pulse.A dark channel is left behind the plasma bullet and the electric field in the dark channel is about 5 kV cm-1.On the other hand,when negative pulse voltage is applied,the electric field has a peak of-16 kV cm-1when the negative voltage is increased to-8 kV.A relatively bright channel is left behind the plasma head and the electric field in this relatively bright channel is about-6 kV cm-1.When the pulse rising time increases from 60 to 200 ns,the peak electric field at both the rising edge and the falling edge of the voltage decreases significantly.When 0.5%of oxygen is added to the main working gas helium,the peak electric field at the rising edge is only about 15 kV cm-1.On the other hand,when 0.5%nitrogen is added,the peak electric field increases especially at the falling edge of the voltage pulse,where it increases reversely from-12 to-16 kV cm-1(the minus sign only represents the direction of electric field).展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 11565003)the Jiangxi Province Academic Degree and Postgraduate Education and Teaching Reform Research Project (Grant No. JXYJG-2022-180)the Scientific Research Base Project of Gannan Normal University (Grant No. 22wdxt01)。
文摘Atmospheric pressure plasma jet shows great potential for polymer film processing. The electrode geometry is the key factor to determine discharge characteristics and film modification of jets. In this paper, we compared the discharge characteristics and the film modifications of atmospheric pressure plasma jets with needle-ring electrode(NRE) and doublering electrode(DRE). The results show that jet with NRE has stronger electric field intensity and higher discharge power,making it present more reactive oxygen particles and higher electron temperature, but its discharge stability is insufficient.In contrast, the jet with DRE has uniform electric field distribution of lower field intensity, which allows it to maintain stable discharge over a wide range of applied voltages. Besides, the modification results show that the treatment efficiency of PET film by NRE is higher than that by DRE. These results provide a suitable atmospheric pressure plasma jets device selection scheme for polymer film processing process.
基金supported by National Natural Science Foundation of China(No.U21A20438)the Foundation of Key Laboratory of Radiation Physics and Technology of the Ministry of Education(No.2021SCURPT03)。
文摘Acrylic polyurethane paint on the surface of 2A12 Al alloy was cleaned utilizing an atmospheric pressure plasma jet in this work.The dynamic evolution of the paint removal process during plasma treatment with time was explored through analysis of morphology and chemical states.The results showed that although the thickness of paint could be reduced effectively with an increase in cleaning time,the removal rate of paint gradually decreased with time.During the initial cleaning process range,its original smooth morphology of paint turned rugged quickly and was almost unchanged with further plasma treatment.Element and chemical state analysis showed that the content of C in the paint layer decreased obviously after plasma treatment.In contrast,the O content increased remarkably.The cleaning mechanism could be mainly attributed to the reaction between active O-containing species in air plasma and organic components in the paint.After removal of superficial organic matter,residue inorganic metal oxide substances aggregated on the base.The exposed metal oxides on the one hand elevated the superficial O content,but on the other hand hindered further plasma penetration,resulting in a gradual decrease in cleaning rate with cleaning time.Therefore,physical wiping was proposed to be incorporated with the plasma method and effective removal of paint was realized.
基金partly supported by National Natural Science Foundation of China(Nos.52207147 and 52177126)the Anhui Provincial Natural Science Foundation(Nos.2208085QE168 and 2108085ME180)the Anhui Provincial Natural Science Research Project of Higher Education(No.2022AH050301)。
文摘Atmospheric fluorocarbon plasma plays an important role in the surface modification of insulating materials like polymers.The existing fluorocarbon plasma is usually generated by dielectric barrier discharge,which has a low concentration of reactive species and may cause insufficient surface fluorination.This work attempts to develop an atmospheric fluorocarbon plasma jet using a coaxial transmission line resonator by microwave discharge with locally enhanced electric field and high density.The gas temperature is reduced by pulse modulation technology.Three kinds of working gases,pure CF_(4),Ar/CF_(4)and He/CF_(4),are utilized to generate the atmospheric microwave fluorocarbon plasma jet.The discharge images,optical emission spectra,electron densities and gas temperatures are studied experimentally.The results show that the Ar/CF_(4)plasma jet has the best comprehensive performance,such as strong discharge intensity and controllable gas temperature.The electron density of the Ar/CF_4plasma jet has a magnitude of 10~(20)m^(-3),indicating a higher density than that of the frequently used dielectric barrier discharge.With the other conditions unchanged,the gas temperature at the end of the Ar/CF_(4)plasma jet can be reduced from 410.2 to 347.3 K by decreasing the duty cycle of the modulated pulse from 0.5 to 0.1.Thence,the microwave Ar/CF_(4)plasma jet is considered to be a promising fluorocarbon plasma source for surface fluorination of polymers.
基金supported in part by China Foundation for the Author of National Excellent Doctoral Dissertation(No.200338)New Century Excellent Talents in University(No.NCET-04-0943)
文摘A coaxial dielectric barrier discharge plasma jet was designed, which can be operated in atmospheric pressure argon under an intermediate frequency sinusoidal resonant power supply, and an atmospheric pressure glow-like discharge was achieved. Two kinds of typical bacteria, i.e., the Staphylococcus aureus (S. aureus) and Escherichia coil (E. coil), were employed to study the bacterial inactivation mechanism by means of the non-thermal plasma. The killing log value (KLV) of S. aureus reached up to 5.38 with a treatment time of 90 s and that of E. coil up to 5.36 with 60 s, respectively. According to the argon emission spectra of the plasma jet and the scanning electron microscope (SEM) images of the two bacteria before and after the plasma treatment, it is concluded that the reactive species in the argon plasma played a major role in the bacterial inactivation, while the heat, electric field and UV photons had little effect.
基金supported by National Natural Science Foundation of China (Nos.10775026, 50537020, 50528707)
文摘An atmospheric pressure nonequilibrium argon/oxygen plasma jet assisted by the preionization of syringe needle electrode discharge is reported. With the syringe needle plasma as its pre-ionization source, the hybrid barrier-jet was shown to generate uniform discharge with a lower breakdown voltage and a relatively low gas temperature varying from 390 K to 440 K, even when the vol.% oxygen in argon was up to 6%. Utilizing the actinometry method, the concentration of atomic oxygen was estimated to be about in an orders of magnitude of 10^17 cm^-3. The argon/oxygen plasma jet was then employed to clean out heat transfer oil, with a maximum cleaning rate of 0.1 mm/s achieved.
基金supported by National Natural Science Foundation of China(Nos.51077008 and 11247239)
文摘An atmospheric pressure plasma jet generated in Ar and O2/Ar mixtures has been investigated by specially designed equipment with double power electrodes at 20~32 kHz, and their effects on the cleaning of surfaces have been studied. Properties of the jet discharge are studied by electrical diagnostics, including the waveform of discharge voltage, discharge current and the Q-V Lissajous figures. The optical emission spectroscopy is used to measure the plasma parameters, such as the excitation temperature and the gas temperature. It is found that the consumed power and the excitation temperature increase with increase of the discharge frequency. On the other hand, at the same discharge frequency, these parameters in O2/Ar mixture plasma are found to be much larger. The effect on surface cleaning is studied from the changes in the contact angle. For Ar plasma jet, the contact angle decreases with increase of the discharge frequency. For O2/Ar mixture plasma jet, the contact angle decreases with increase of discharge frequency up to 26 kHz, however, further increase of discharge frequency does not show further decrease in the contact angle. At the same discharge frequency, the contact angle after O2/Ar mixture plasma cleaning is found to be much lower compared to the case of pure Ar. From the results of quadrupole mass-spectrum analysis, we can identify more fragment molecules of CO and H2O in the emitted gases after O2/Ar plasma jet treatment compared with Ar plasma jet treatment, which are produced by the decomposition of surface organic contaminants during the cleaning process.
文摘The sterilizing effect of the non-equilibrium atmospheric pressure plasma jet by applying it to the Bacillus subtilis spores is invesigated. A stable glow discharge in argon or helium gas fed with active gas (oxygen), was generated in the coaxial cylindrical reactor powered by the radio-frequency power supply at atmospheric pressure. The experimental results indicated that the efficiency of killing spores by making use of an Ar/O2 plasma jet was much better than with a He/O2 plasma jet. The decimal reduction value of Ar/O2 and He/O2 plasma jets under the same experimental conditions was 4.5 seconds and 125 seconds, respectively. It was found that there exists an optimum oxygen concentration for a certain input power, at which the sterilization efficiency reaches a maximum value. It is believed that the oxygen radicals are generated most efficiently under this optimum condition.
文摘Electrical and optical properties of an argon plasma jet were characterized. In particular, effects of an additive gas, namely nitrogen or oxygen, on these properties were studied in detail. The plasma jet was found to be of a glow-like discharge, which scarcely changed upon the injection of an additive gas, either directly or through a glass capillary. Optical emission spectroscopy characterization revealed that excited argon atoms were the predominant active species in this plasma jet. Metastable argon atoms were highly quenched, and N2(C3yIu) became the main energy carrier following nitrogen injection. When oxygen was added to the afterglow zone through a glass capillary, no significant quenching effect was observed and the number of oxygen atoms decreased with the increase in oxygen concentration. Finally, to demonstrate an application of this plasma jet, a high-density polyethylene surface was treated with argon, argon/nitrogen, and argon/oxygen plasmas.
基金Project supported by the Science Foundation of Hefei Institutes of Physical Science, Chinese Academy of Sciences (Grant No. 085FZ10134)
文摘This paper reports that an atmospheric pressure dielectric barrier discharge plasma jet, which uses argon or argon + hydrogen peroxide vapour as the working gas, is designed to sterilize the bacillus subtilis. Compared with the pure argon plasma, the bacterial inactivation efficacy has a significant improvement when hydrogen peroxide vapour is added into the plasma jet. In order to determine which factors play the main role in inactivation, several methods are used, such as determination of optical emission spectra, high temperature dry air treatment, protein leakage quantification, and scanning electron microscope. These results indicate that the possible inactivation mechanisms are the synergistic actions of chemically active species and charged species.
基金supported in part by the Scientific Innovation Practice Project of Postgraduates of Chang’an University(No.300103714007)the Fundamental Research Funds for the Central Universities(No.300102329301)National Natural Science Foundation of China(No.51677146)。
文摘This study investigates the influence of two types of target,skin tissue and cell culture medium,with different permittivities on a k Hz helium atmospheric pressure plasma jet(APPJ)during its application for wound healing.The basic optical-electrical characteristics,the initiation and propagation and the emission spectra of the He APPJ under different working conditions are explored.The experimental results show that,compared with a jet freely expanding in air,the diameter and intensity of the plasma plume outside the nozzle increase when it interacts with the pigskin and cell culture medium targets,and the mean velocity of the plasma bullet from the tube nozzle to a distance of 15 mm is also significantly increased.There are also multiple increases in the relative intensity of OH(A^(2)Σ→X^(2)Π)and O(3p^(5)S-3s^(5)S)at a position 15 mm away from nozzle when the He APPJ interacts with cell culture medium compared with the air and pigskin targets.Taking the surface charging of the low permittivity material capacitance and the strengthened electric field intensity into account,they make the various characteristics of He APPJ interacting with two different targets together.
基金supported by National Natural Science Foundation of China (No. 51577011)
文摘In order to form an atmospheric-pressure plasma jet without airflow, a needle–ring electrode structure is proposed in this paper. When heteropolar potentials are applied to a needle and a ring, a marked electric field strength enhancement around the needle’s pointed end has been found. When the same potential is applied to both the needle and the ring, the lateral electric field strength for the needle can be weakened. By using the above two methods, an increase of the difference between the pointed end electric field strength and the lateral one is achieved and stable plasma jets are formed. A symmetrical space electric field distribution is established at the pointed end of the needles when several sets of heteropolar needle–ring electrodes are uniformly arranged, which is conducive to forming a uniform array plasma jet. Under DC discharge conditions, a safe and stable plasma jet of high density and an array plasma jet are successfully achieved.
基金funded by National Key Research, Development Program of China (No. 2017YFE0301305KYWX-002)Sichuan Science and Technology Program (No. 2021YFSY0015)
文摘Atmospheric pressure plasma jet(APPJ)was used to clean nitrogen-containing carbon films(C–N)fabricated by plasma-assisted chemical vapor deposition method employing the plasma surface interaction linear device at Sichuan University(SCU-PSI).The properties of the contaminated films on the surface of pristine and He-plasma pre-irradiated tungsten matrix,such as morphology,crystalline structure,element composition and chemical structure were characterized by scanning electron microscopy,grazing incidence x-ray diffraction and x-ray photoelectron spectroscopy.The experimental results revealed that the removal of C–N film with a thickness of tens of microns can be realized through APPJ cleaning regardless of the morphology of the substrates.Similar removal rates of 16.82 and 13.78μm min^(-1)were obtained for C–N films deposited on a smooth pristine W surface and rough fuzz-covered W surface,respectively.This is a remarkable improvement in comparison to the traditional cleaning method.However,slight surface oxidation was found after APPJ cleaning,but the degree of oxidation was acceptable with an oxidation depth increase of only 3.15 nm.Optical emission spectroscopy analysis and mass spectrometry analysis showed that C–N contamination was mainly removed through chemical reaction with reactive oxygen species during APPJ treatment using air as the working gas.These results make APPJ cleaning a potentially effective method for the rapid removal of C–N films from the wall surfaces of fusion devices.
基金Project supported by China National Fund for Distinguished Young Scientists(51125029)
文摘To compare the formation mechanisms of He and Ar atmospheric pressure plasma jets(APPJs),an intensified charge-coupled device(ICCD)are utilized to observe the dynamic process of APPJ.The experimental results show that,He APPJ is first ignited,which is independent of the dielectric barrier discharge(DBD)between the two wrapped electrodes when the high voltage placed at the downstream.The intensity and APPJ length under positive discharge pulses are bigger than that under negative discharge pulses due to the space charge effect.The He APPJ is formed by the DBD development when the high-voltage electrode placed at the upstream side of tube.However,the plasma plume in Ar APPJ is formed by the propagation of DBD whatever the high-voltage electrode is arranged on upstream or downstream side of ground electrode.The difference in formation mechanism between He and Ar APPJs is mainly caused by the gas properties.Moreover,during the discharges,Ar tends to lead to thermal instability and electron Maxwellian instability.
文摘In this study,a high-density polyethylene(HDPE,5-mm-thick,0.95 g/cm3) surface was treated using an RF capacitive atmospheric pressure cold Ar plasma jet.By using this Ar plasma jet,a hydrophilic HDPE surface was formed during the plasma treatment.In particular, the effects of an additive gas(N;or O2) on the HDPE surface treatment were investigated in detail.It was shown that the addition of N2 or O2 gas had an important influence on the HDPE surface treatment.Compared to pure Ar plasma treatment,a lower value of water contact angle (WCA) was obtained when a trace of N2 or O2 gas was added.It was also found that besides the quantities of active species in the plasma jet,the treatment temperature played an important role in the HDPE surface treatment.This is because surface molecular motion is not negligible when the treatment temperature is close to the melting point of the polymer.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11665005,11505032,11547139,51672249,and 11565003)the Zhejiang Natural Science Foundation of China(Grant No.LY16A050002)+3 种基金the Natural Science Foundation of Jiangxi Province,China(Grant Nos.20161BAB211026,20171ACB21049,and 20171BAB211012)the Science and Technology Project of Jiangxi Provincial Department of Education,China(Grant No.GJJ150981)the Program for Innovative Research Team of Zhejiang Sci-Tech University,Chinathe Opening Foundation of Insititue of Textile Technology,Wuhan Texitle Universitiy,China(Grant No.GCZX201702)
文摘The sterilization of the simulated unearthed silk fabrics using an atmospheric pressure plasma jet(APPJ) system employing Ar/O2 or He/O2 plasma to inactivate the mycete attached on the silk fabrics is reported. The effects of the APPJ characteristics(particularly the gas type and discharge power) on the fabric strength, physical-chemical structures,and sterilizing efficiency were investigated. Experimental results showed that the Ar/O2 APPJ plasma can inactivate the mycete completely within 4.0 min under a discharge power of 50.0 W. Such an APPJ treatment had negligible impact on the mechanical strength of the fabric and the surface chemical characteristics. Moreover, the Ar ions, O and OH radicals were shown to play important roles on the sterilization of the mycete attached on the unearthed silk fabrics.
文摘A low power atmospheric pressure plasma jet driven by a 24 kHz AC power source and operated with a CH4/air gas mixture has been investigated by optical emission spectrometer. The plasma parameters including the electron excitation temperature, vibrational temperature and rotational temperature of the plasma jet at different discharge powers are diagnosed based on the assumption that the kinetic energy of the species obeys the Boltzmann distribution. The electron density at different power is also investigated by HS Stark broadening. The results show that the plasma source works under non-equilibrium conditions. It is also found that the vibrational temperature and rotational temperat;ure increase with discharge power, whereas the electron excitation temperature seems to have a downward trend. The electron density increases from 0.8×10^21 m^-3 to 1.1×10^21 m^-3 when the discharge power increases from 53 W to 94 W.
基金supported by National Natural Science Foundation of China(No.11165012)China Postdoctoral Science Foundation Funded Project(Nos.2011M501494,2012T50831)+1 种基金Project of Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province,ChinaProject of Northwest Normal University of China(NWNU-LKQN-11-9)
文摘Ar/CH3OH and Ar/N2/CH3OH plasma jets were generated at atmospheric pressure by dual-frequency excitations. Two different cases were studied with focus laid on the generation of CN radicals. In one case Ar gas passed through a bubbler with saturated methanol steam but without addition of N2 (Ar/CH3OH plasma). In the other case N2 passed through the bubbler with saturated methanol steam (Ar/N2/CH3OH plasma). The optical emission lines of CN radicals have been observed in these two cases of plasma discharges. The addition of N2 can significantly increase the optical emission intensity of CN bands.
文摘Three-electrode plasma jet system consisting of a perforated dielectric tube with two outer and one floating inner electrodes was developed and employed for nano-coating processes of Si [1 0 0] wafer. Lowered gas breakdown voltage, increasing plasma density and increased discharge current were achieved by using the floating inner electrode. The low temperature (Nonthermal) Atmospheric Pressure Plasma protective coating technique using precursor-containing gases (Ar, O2 and OMCTS mixture) which injected into Plasma Jet (APPJ), there are several techniques are introduced here to avoid substrate damage including increasing plasma density without increasing the kinetic energy of the ion bombardment. Furthermore some few precautions are given here to insure good media for silicon wafer prepared for coating.
基金Project supported by National Natural Science Foundation of China (10875010 11175017).
文摘Non-thermal plasma jet at atmospheric pressure has recently attracted lots of attention because of its applications in plasma bullet or plasma plume.Thus,we studied on generating plasma jet by coplanar dielectric barrier discharge in a device driven by sinusoidal voltage.The processes of plasma discharges in both positive and negative half cycles were recorded using a high-speed ICCD(intensified charge-coupled device)camera;based on the results we estimated the velocity of plasma propagation,and investigated the influence of gas flow on the plasma development.It is shown that the plasma bullets,which have velocity in the order of 103~104m/s,exist only outside the cathode.APPJ(atmospheric pressure plasma jet)is created by the electron beam from the cathode,and then sustained by a strong radial electric field near and outside the cathode.The gas flow influences the APPJ length in air but not the APPJ discharge,while the discharge is affected significantly by the applied voltage.
基金National Key Research and Development Program of China(No.2021YFE0114700)National Natural Science Foundation of China(Nos.52130701 and 51977096)。
文摘Electric field is an important parameter of plasma,which is related to electron temperature,electron density,excited species density,and so on.In this work,the electric field of an atmospheric pressure plasma jet is diagnosed by the electric field induced second harmonic(E-FISH)method,and the time-resolved electric field under different conditions is investigated.When positive pulse voltage is applied,the electric field has a peak of about 25 kV cm-1at the rising edge of the voltage pulse.A dark channel is left behind the plasma bullet and the electric field in the dark channel is about 5 kV cm-1.On the other hand,when negative pulse voltage is applied,the electric field has a peak of-16 kV cm-1when the negative voltage is increased to-8 kV.A relatively bright channel is left behind the plasma head and the electric field in this relatively bright channel is about-6 kV cm-1.When the pulse rising time increases from 60 to 200 ns,the peak electric field at both the rising edge and the falling edge of the voltage decreases significantly.When 0.5%of oxygen is added to the main working gas helium,the peak electric field at the rising edge is only about 15 kV cm-1.On the other hand,when 0.5%nitrogen is added,the peak electric field increases especially at the falling edge of the voltage pulse,where it increases reversely from-12 to-16 kV cm-1(the minus sign only represents the direction of electric field).