期刊文献+
共找到76篇文章
< 1 2 4 >
每页显示 20 50 100
Influence of bias voltage and oxygen addition on the discharge aspects of a diffuse argon plume in an atmospheric pressure plasma jet
1
作者 Pengying JIA Guoxin HAN +6 位作者 Xiupin DONG Kaiyue WU Junxia RAN Xuexia PANG Xuexue ZHANG Jiacun WU Xuechen LI 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第12期75-81,共7页
A remote plasma,also referred to as a plasma plume(diffuse or filamentary),is normally formed downstream of an atmospheric pressure plasma jet.In this study,a diffuse plume is formed by increasing the bias voltage(U_(... A remote plasma,also referred to as a plasma plume(diffuse or filamentary),is normally formed downstream of an atmospheric pressure plasma jet.In this study,a diffuse plume is formed by increasing the bias voltage(U_(b))applied to the downstream electrode of an argon plasma jet excited by a negatively pulsed voltage.The results indicate that the plume is filamentary when U_(b)is low,which transits to the diffuse plume with increasing U_(b).The discharge initiated at the rising edge of the pulsed voltage is attributed to the diffuse plume,while that at the falling edge contributes to the filament in the plume.For the diffuse plume,the discharge intensity decreases with the increasing oxygen content(C_o).Fast photography reveals that the diffuse plume results from a negative streamer,which has a dark region near the nozzle with C_o=0%.However,the dark region is absent with C_o=0.5%.From the optical emission spectrum,the electron density,electron excitation temperature,gas temperature,and oxygen atom concentration are investigated. 展开更多
关键词 atmospheric pressure plasma jet diffuse plasma plume optical emission spectrum
下载PDF
Investigation of paint removal by atmospheric pressure plasma jet 被引量:1
2
作者 王志君 陈忠文 +1 位作者 康皓 叶宗标 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第8期130-140,共11页
Acrylic polyurethane paint on the surface of 2A12 Al alloy was cleaned utilizing an atmospheric pressure plasma jet in this work.The dynamic evolution of the paint removal process during plasma treatment with time was... Acrylic polyurethane paint on the surface of 2A12 Al alloy was cleaned utilizing an atmospheric pressure plasma jet in this work.The dynamic evolution of the paint removal process during plasma treatment with time was explored through analysis of morphology and chemical states.The results showed that although the thickness of paint could be reduced effectively with an increase in cleaning time,the removal rate of paint gradually decreased with time.During the initial cleaning process range,its original smooth morphology of paint turned rugged quickly and was almost unchanged with further plasma treatment.Element and chemical state analysis showed that the content of C in the paint layer decreased obviously after plasma treatment.In contrast,the O content increased remarkably.The cleaning mechanism could be mainly attributed to the reaction between active O-containing species in air plasma and organic components in the paint.After removal of superficial organic matter,residue inorganic metal oxide substances aggregated on the base.The exposed metal oxides on the one hand elevated the superficial O content,but on the other hand hindered further plasma penetration,resulting in a gradual decrease in cleaning rate with cleaning time.Therefore,physical wiping was proposed to be incorporated with the plasma method and effective removal of paint was realized. 展开更多
关键词 atmospheric pressure plasma jet paint removal dynamic evolution
下载PDF
Compared discharge characteristics and film modifications of atmospheric pressure plasma jets with two different electrode geometries
3
作者 陈雄 王兴权 +2 位作者 张彬祥 袁明 杨思泽 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第11期537-544,共8页
Atmospheric pressure plasma jet shows great potential for polymer film processing. The electrode geometry is the key factor to determine discharge characteristics and film modification of jets. In this paper, we compa... Atmospheric pressure plasma jet shows great potential for polymer film processing. The electrode geometry is the key factor to determine discharge characteristics and film modification of jets. In this paper, we compared the discharge characteristics and the film modifications of atmospheric pressure plasma jets with needle-ring electrode(NRE) and doublering electrode(DRE). The results show that jet with NRE has stronger electric field intensity and higher discharge power,making it present more reactive oxygen particles and higher electron temperature, but its discharge stability is insufficient.In contrast, the jet with DRE has uniform electric field distribution of lower field intensity, which allows it to maintain stable discharge over a wide range of applied voltages. Besides, the modification results show that the treatment efficiency of PET film by NRE is higher than that by DRE. These results provide a suitable atmospheric pressure plasma jets device selection scheme for polymer film processing process. 展开更多
关键词 atmospheric pressure plasma jet electrode structure jet characteristics MODIFICATION
下载PDF
The effects of radio frequency atmospheric pressure plasma and thermal treatment on the hydrogenation of TiO_(2) thin film
4
作者 张宇 王昊哲 +5 位作者 何涛 李妍 郭颖 石建军 徐雨 张菁 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第6期72-81,共10页
The effects of radio frequency(RF)atmospheric pressure(AP)He/H_(2)plasma and thermal treatment on the hydrogenation of TiO_(2)thin films were investigated and compared in this work.The color of the original TiO_(2)fil... The effects of radio frequency(RF)atmospheric pressure(AP)He/H_(2)plasma and thermal treatment on the hydrogenation of TiO_(2)thin films were investigated and compared in this work.The color of the original TiO_(2)film changes from white to black after being hydrogenated in He/H_(2)plasma at160 W(gas temperature~381℃)within 5 min,while the color of the thermally treated TiO_(2)film did not change significantly even in pure H_(2)or He/H_(2)atmosphere with higher temperature(470℃)and longer time(30 min).This indicated that a more effective hydrogenation reaction happened through RF AP He/H_(2)plasma treatment than through pure H_(2)or He/H_(2)thermal treatment.The color change of TiO_(2)film was measured based on the Commission Internationale d’Eclairage L*a*b*color space system.Hydrogenated TiO_(2)film displayed improved visible light absorption with increased plasma power.The morphology of the cauliflower-like nanoparticles of the TiO_(2)film surface remained unchanged after plasma processing.X-ray photoelectron spectroscopy results showed that the contents of Ti3+species and Ti-OH bonds in the plasma-hydrogenated black TiO_(2)increased compared with those in the thermally treated TiO_(2).X-ray diffraction(XRD)patterns and Raman spectra indicated that plasma would destroy the crystal structure of the TiO_(2)surface layer,while thermal annealing would increase the overall crystallinity.The different trends of XRD and Raman spectra results suggested that plasma modification on the TiO_(2)surface layer is more drastic than on its inner layer,which was also consistent with transmission electron microscopy results.Optical emission spectra results suggest that numerous active species were generated during RF AP He/H_(2)plasma processing,while there were no peaks detected from thermal processing.A possible mechanism for the TiO_(2)hydrogenation process by plasma has been proposed.Numerous active species were generated in the bulk plasma region,accelerated in the sheath region,and bumped toward the TiO_(2)film,which will react with the TiO_(2)surface to form OVs and disordered layers.This leads to the tailoring of the band gap of black TiO_(2)and causes its light absorption to extend into the visible region. 展开更多
关键词 black TiO_(2)thin film atmospheric pressure plasma thermal treatment visible light response HYDROGENATION
下载PDF
Enhanced antibacterial activity of cotton via silver nanocapsules deposited by atmospheric pressure plasma jet
5
作者 张潇漫 马晓萍 +4 位作者 李茂洋 季佩宇 黄天源 诸葛兰剑 吴雪梅 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第3期130-137,共8页
In this work,the antibacterial activity of cotton containing silver nanocapsules prepared by atmospheric pressure plasma(APP)deposition is investigated.The nanocapsules consist of a shell and a silver nanoparticle(Ag ... In this work,the antibacterial activity of cotton containing silver nanocapsules prepared by atmospheric pressure plasma(APP)deposition is investigated.The nanocapsules consist of a shell and a silver nanoparticle(Ag NP)core,where the core is used to bring antibacterial activity,and the shell is utilized to suppress the potential toxicity of Ag NPs.The surface morphology and the elements of the samples are analyzed by scanning electron microscopy(SEM),energy dispersive x-ray and x-ray photoelectron spectroscopy(XPS).The SEM results show that the skin of the cotton fibers will fall off gradually after APP treatment over 3 min,and the XPS results show that the Ag content will rise to 1.6%after APP deposition for 10 min.Furthermore,the antimicrobial activity tests show that the reduction rates of Escherichia coli and Staphylococcus aureus can achieve 100%when the sample is treated for 10 min,which exhibits excellent antibacterial activity.In addition,the UV absorption properties of the cotton will also be correspondingly improved,which brings a broader application prospect for antibacterial cotton. 展开更多
关键词 atmospheric pressure plasma(APP) NANOCAPSULES antimicrobial activity COTTON
下载PDF
Atmospheric Pressure Plasma Jet in Ar and O_2/Ar Mixtures:Properties and High Performance for Surface Cleaning 被引量:4
6
作者 金英 任春生 +2 位作者 杨亮 张家良 王德真 《Plasma Science and Technology》 SCIE EI CAS CSCD 2013年第12期1203-1208,共6页
An atmospheric pressure plasma jet generated in Ar and O2/Ar mixtures has been investigated by specially designed equipment with double power electrodes at 20~32 kHz, and their effects on the cleaning of surfaces have... An atmospheric pressure plasma jet generated in Ar and O2/Ar mixtures has been investigated by specially designed equipment with double power electrodes at 20~32 kHz, and their effects on the cleaning of surfaces have been studied. Properties of the jet discharge are studied by electrical diagnostics, including the waveform of discharge voltage, discharge current and the Q-V Lissajous figures. The optical emission spectroscopy is used to measure the plasma parameters, such as the excitation temperature and the gas temperature. It is found that the consumed power and the excitation temperature increase with increase of the discharge frequency. On the other hand, at the same discharge frequency, these parameters in O2/Ar mixture plasma are found to be much larger. The effect on surface cleaning is studied from the changes in the contact angle. For Ar plasma jet, the contact angle decreases with increase of the discharge frequency. For O2/Ar mixture plasma jet, the contact angle decreases with increase of discharge frequency up to 26 kHz, however, further increase of discharge frequency does not show further decrease in the contact angle. At the same discharge frequency, the contact angle after O2/Ar mixture plasma cleaning is found to be much lower compared to the case of pure Ar. From the results of quadrupole mass-spectrum analysis, we can identify more fragment molecules of CO and H2O in the emitted gases after O2/Ar plasma jet treatment compared with Ar plasma jet treatment, which are produced by the decomposition of surface organic contaminants during the cleaning process. 展开更多
关键词 atmospheric pressure plasma jet surface cleaning the excitation temperature the contact angle quadrupole mass-spectrum
下载PDF
In vitro study of nonthermal atmospheric pressure plasma in improving the durability of the dentin–adhesive interface with an etch-and-rinse system 被引量:3
7
作者 Danyang WANG Na XIE +8 位作者 Lin WANG Peng WANG Yanping ZUO Chengfang TANG Xinyang MA Wen XU Fei LIU Qinhong WANG Yang WANG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2020年第12期89-96,共8页
In this study, we employed a nonthermal atmospheric pressure plasma(NTAPP) jet to evaluate the effect of plasma treatment on the durability of resin–dentin bonding under a thermocycling challenge. Furthermore, we ass... In this study, we employed a nonthermal atmospheric pressure plasma(NTAPP) jet to evaluate the effect of plasma treatment on the durability of resin–dentin bonding under a thermocycling challenge. Furthermore, we assessed the degradation resistance of plasma-treated collagen under a sodium hypochlorite(NaClO) challenge. We assessed the beneficial effect of NTAPP treatment on the acid-etched dentin–bonding interface by testing the micro-tensile bond strength and examining the morphology. We found that the immediate bonding strength of the dentin significantly increased after NTAPP treatment. Compared with the control group, NTAPP resulted in a more prominent effect on the bonding durability of the dentin–adhesive interface after treatment for 5 or 10 s. Simultaneously, the mechanical strength of dentin collagen under the NaClO challenge was improved. Our results indicate that, in optimal conditions, NTAPP could be a promising method to protect dentin collagen and to improve the bonding durability between dentin and etch-and-rinse adhesives. 展开更多
关键词 nonthermal atmospheric pressure plasma DENTIN bonding durability COLLAGEN hybrid layer
下载PDF
Efficacy of Atmospheric Pressure Plasma as an Antibacterial Agent Against Enterococcus Faecalis in Vitro 被引量:3
8
作者 曹颖光 杨平 +4 位作者 卢新培 熊紫兰 叶涛 熊青 孙自镛 《Plasma Science and Technology》 SCIE EI CAS CSCD 2011年第1期93-98,共6页
Enterococcus faecalis (E. faecalis) is a microorganism that can survive extreme challenges in obturated root canals. The aim of this study was to evaluate the efficacy of a non-thermal atmospheric pressure plasma pl... Enterococcus faecalis (E. faecalis) is a microorganism that can survive extreme challenges in obturated root canals. The aim of this study was to evaluate the efficacy of a non-thermal atmospheric pressure plasma plume against E. faecalis in vitro. A non-thermal atmospheric pressure plasma jet device which could generate a cold plasma plume carrying a peak current of 300 mA was used. The antibacterial efficacy of this device against E. faecalis and its biofihn un- der different conditions was detected. The antibacterial efficacy of the plasma against E. faecalis and Staphylococcus aureus (S. aureus) was also evaluated. After plasma treatment, the average diameter of inhibition zone on S. aureus and E. faecalis was 2.62±0.26 cm and 1.06±0.30 cm, respectively (P 〈 0.05). The diameter was increased with prolongation of the treatment dura- tion. The diameters of inhibition zone of the sealed Petri dishes were larger than those of the uncovered Petri dishes. There was significant difference in colony-forming units between plasma group and control group on E. faecalis biofilm (P 〈 0.01). The transmission electron microscopy revealed that the ultrastructural changes eytoderm of E. faecalis were observed after treatment for 2min. It is concluded that the non-thermal atmospheric pressure plasma could serve as an effective adjunct to standard endodontie microbial treatment. 展开更多
关键词 non-thermal atmospheric pressure plasma jet Enterococcus faecalis Staphy- lococcus aureus
下载PDF
Applications of atmospheric pressure plasma in microbial inactivation and cancer therapy: a brief review 被引量:2
9
作者 Zimu XU Yan LAN +9 位作者 Jie MA Jie SHEN Wei HAN Shuheng HU Chaobing YE Wenhao XI Yudi ZHANG Chunjun YANG Xiao ZHAO Cheng CHENG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2020年第10期10-38,共29页
Atmospheric pressure cold plasma, with advantages such as high particle activity, no thermal damage, high efficiency and direct and friendly contact with human tissues, is considered to have great potential in biomedi... Atmospheric pressure cold plasma, with advantages such as high particle activity, no thermal damage, high efficiency and direct and friendly contact with human tissues, is considered to have great potential in biomedical applications. Therefore, 'plasma medicine' as a new interdiscipline has been developed in the past two decades. This review first briefly describes the development of typical plasma sources suitable for biomedical applications, and those with different discharge forms are simply compared, evaluated and summarized. Subsequently, measurement of the crucial gaseous reactive particles(e.g. OH and O) and their spatio-temporal distributions are introduced. Meanwhile, the generation and variation rules and the related critical macroscopic parameters of the plasma-induced aqueous reactive species are summarized. Finally, related studies in the last ten years on the mechanisms of the plasma-driven microbial inactivation and plasma-induced apoptosis of cancer cells are introduced. Moreover, some scientific problems that need to be urgently solved in the field of plasma medicine are also discussed. This review will provide useful guidance for future related research. 展开更多
关键词 atmospheric pressure plasma plasma medicine reactive species BACTERIA cancer cells
下载PDF
On the green aurora emission of Ar atmospheric pressure plasma 被引量:2
10
作者 Fengwu LIU Lanlan NIE Xinpei LU 《Plasma Science and Technology》 SCIE EI CAS CSCD 2022年第5期195-204,共10页
The Ar atmospheric pressure plasma was found to be an excellent laboratorial source for green aurora emission.However,the characteristic and production mechanism of the green aurora emission of the Ar atmospheric pres... The Ar atmospheric pressure plasma was found to be an excellent laboratorial source for green aurora emission.However,the characteristic and production mechanism of the green aurora emission of the Ar atmospheric pressure plasma are still not clear.In this work,an Ar plasma in a long glass tube which emits intense green aurora light is investigated.With the long glass tube,it can be concluded that the green aurora emission in the Ar plasma is not owing to the mixture of Ar plasma plume with the surrounding air.It is also found that the green aurora emission often appeared beyond the active electrode when the active electrode is placed at the downstream of the gas flow.The green emission disappears when the traces amount of O_(2) or N_(2)(about 0.05%–0.07%)is added to Ar.This is because the O_(2) molecules deactivate the upper state O(^(1)S),which results in the decrease of the green emission.On the other hand,when N_(2) is added,Ar metastable atoms are quenched by N_(2),which results in the decrease of O atoms and eventually leads to the decrease of the green emission intensity.The intensity of the green aurora emission increases when the driving voltage frequency increases from 1 to 10 k Hz.More importantly,it is found that the green aurora emission is not affected when a grounded stainless steel needle is in contact with the plasma plume.Thus,the green emission is not driven electrically.All these findings are helpful for the understanding of the physics and its applications of atmospheric pressure plasma jet in space physics,laser physics and other application areas. 展开更多
关键词 atmospheric pressure plasma jet plasma optical emission aurora emission
下载PDF
Characteristics of a kHz helium atmospheric pressure plasma jet interacting with two kinds of targets 被引量:1
11
作者 Guimin XU Yue GENG +2 位作者 Xinzhe LI Xingmin SHI Guanjun ZHANG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2021年第9期74-85,共12页
This study investigates the influence of two types of target,skin tissue and cell culture medium,with different permittivities on a k Hz helium atmospheric pressure plasma jet(APPJ)during its application for wound hea... This study investigates the influence of two types of target,skin tissue and cell culture medium,with different permittivities on a k Hz helium atmospheric pressure plasma jet(APPJ)during its application for wound healing.The basic optical-electrical characteristics,the initiation and propagation and the emission spectra of the He APPJ under different working conditions are explored.The experimental results show that,compared with a jet freely expanding in air,the diameter and intensity of the plasma plume outside the nozzle increase when it interacts with the pigskin and cell culture medium targets,and the mean velocity of the plasma bullet from the tube nozzle to a distance of 15 mm is also significantly increased.There are also multiple increases in the relative intensity of OH(A^(2)Σ→X^(2)Π)and O(3p^(5)S-3s^(5)S)at a position 15 mm away from nozzle when the He APPJ interacts with cell culture medium compared with the air and pigskin targets.Taking the surface charging of the low permittivity material capacitance and the strengthened electric field intensity into account,they make the various characteristics of He APPJ interacting with two different targets together. 展开更多
关键词 atmospheric pressure plasma jet INTERACTION cell culture medium skin tissue wound healing
下载PDF
Cleaning of nitrogen-containing carbon contamination by atmospheric pressure plasma jet 被引量:1
12
作者 Li YANG Sishu WANG +8 位作者 Andong WU Bo CHEN Jianjun CHEN Hongbin WANG Shuwei CHEN Jianjun WEI Kun ZHANG Zongbiao YE Fujun GOU 《Plasma Science and Technology》 SCIE EI CAS CSCD 2022年第10期127-138,共12页
Atmospheric pressure plasma jet(APPJ)was used to clean nitrogen-containing carbon films(C–N)fabricated by plasma-assisted chemical vapor deposition method employing the plasma surface interaction linear device at Sic... Atmospheric pressure plasma jet(APPJ)was used to clean nitrogen-containing carbon films(C–N)fabricated by plasma-assisted chemical vapor deposition method employing the plasma surface interaction linear device at Sichuan University(SCU-PSI).The properties of the contaminated films on the surface of pristine and He-plasma pre-irradiated tungsten matrix,such as morphology,crystalline structure,element composition and chemical structure were characterized by scanning electron microscopy,grazing incidence x-ray diffraction and x-ray photoelectron spectroscopy.The experimental results revealed that the removal of C–N film with a thickness of tens of microns can be realized through APPJ cleaning regardless of the morphology of the substrates.Similar removal rates of 16.82 and 13.78μm min^(-1)were obtained for C–N films deposited on a smooth pristine W surface and rough fuzz-covered W surface,respectively.This is a remarkable improvement in comparison to the traditional cleaning method.However,slight surface oxidation was found after APPJ cleaning,but the degree of oxidation was acceptable with an oxidation depth increase of only 3.15 nm.Optical emission spectroscopy analysis and mass spectrometry analysis showed that C–N contamination was mainly removed through chemical reaction with reactive oxygen species during APPJ treatment using air as the working gas.These results make APPJ cleaning a potentially effective method for the rapid removal of C–N films from the wall surfaces of fusion devices. 展开更多
关键词 N-containing C(C–N)film plasma-assisted chemical vapor deposition He-plasma irradiation atmospheric pressure plasma jet plasma cleaning
下载PDF
An Indirect Method for Measuring Electron Density of Atmospheric Pressure Plasma Jets 被引量:1
13
作者 刘莉莹 张家良 王德真 《Plasma Science and Technology》 SCIE EI CAS CSCD 2009年第6期693-698,共6页
An indirect method for measuring the electron density of radio frequency atmospheric pressure plasma jets (RF-APPJ) based on the discharge voltage and current waveforms is presented. An equivalent circuit of the pla... An indirect method for measuring the electron density of radio frequency atmospheric pressure plasma jets (RF-APPJ) based on the discharge voltage and current waveforms is presented. An equivalent circuit of the plasma discharge is assumed by taking into account the electrode capacitance, serial resistance and inductance of the bulk plasma, as well as the sheath impedance. Based on the circuit model, the electron density can be obtained according to Ohm's law. By using this method, the effects of the electrode shape and discharge gap on the electron density are discussed. 展开更多
关键词 atmospheric pressure plasma jets radio frequency discharge electron density
下载PDF
Characteristics of Low Power CH_4/Air Atmospheric Pressure Plasma Jet
14
作者 张军 肖德志 +5 位作者 方世东 舒兴胜 左潇 程诚 孟月东 王守国 《Plasma Science and Technology》 SCIE EI CAS CSCD 2015年第3期202-208,共7页
A low power atmospheric pressure plasma jet driven by a 24 kHz AC power source and operated with a CH4/air gas mixture has been investigated by optical emission spectrometer. The plasma parameters including the electr... A low power atmospheric pressure plasma jet driven by a 24 kHz AC power source and operated with a CH4/air gas mixture has been investigated by optical emission spectrometer. The plasma parameters including the electron excitation temperature, vibrational temperature and rotational temperature of the plasma jet at different discharge powers are diagnosed based on the assumption that the kinetic energy of the species obeys the Boltzmann distribution. The electron density at different power is also investigated by HS Stark broadening. The results show that the plasma source works under non-equilibrium conditions. It is also found that the vibrational temperature and rotational temperat;ure increase with discharge power, whereas the electron excitation temperature seems to have a downward trend. The electron density increases from 0.8×10^21 m^-3 to 1.1×10^21 m^-3 when the discharge power increases from 53 W to 94 W. 展开更多
关键词 atmospheric pressure plasma jet optical emission spectroscopy rotational temperature vibrational temperature excitation temperature electron density
下载PDF
Atmospheric Pressure Plasma Processing of Fused Silica in Different Discharge Modes
15
作者 李娜 辛强 +1 位作者 张鹏 王波 《Plasma Science and Technology》 SCIE EI CAS CSCD 2015年第7期567-573,共7页
One of the major advantages of utilizing atmospheric pressure plasma processing (APPP) technology to fabricate ultra-precision optics is that there is no subsurface damage during the process. In APPP, the removal fo... One of the major advantages of utilizing atmospheric pressure plasma processing (APPP) technology to fabricate ultra-precision optics is that there is no subsurface damage during the process. In APPP, the removal footprint and removal rate are critical to the capability and efficiency of the figuring of the optical surface. In this paper, an atmospheric plasma torch, which can work in both remote mode and contact mode, is presented. The footprints and the removal rates of both modes are compared by profilometer measurements. The influences of process recipes and substrate thickness for both modes are investigated through a series of experiments. When the substrate is thinner than 12 mm, the removal rate in contact mode is higher. However, the removal rate and width of the footprint decrease dramatically as the substrate thickness increases in contact mode. 展开更多
关键词 atmospheric pressure plasma processing remote mode contact mode removalfootprint removal rate
下载PDF
The Effects of Gas Composition on the Atmospheric Pressure Plasma Jet Modification of Polyethylene Films
16
作者 孙洁 邱夷平 《Plasma Science and Technology》 SCIE EI CAS CSCD 2015年第5期402-408,共7页
Polyethylene (PE) films are treated using an atmospheric pressure plasma jet (APPJ) with He or He/O2 gas for different periods of time. The influence of gas type on the plasma polymer interactions is studied. The ... Polyethylene (PE) films are treated using an atmospheric pressure plasma jet (APPJ) with He or He/O2 gas for different periods of time. The influence of gas type on the plasma polymer interactions is studied. The surface contact angle of the PE film can be effectively lowered to 58° after 20 s of He/O2 plasma treatment and then remains almost unchanged for longer treatment durations, while, for He plasma treatment, the film surface contact angle drops gradually to 47° when the time reaches 120 s. Atomic force microscopy (AFM) results show that the root mean square (RMS) roughness was significantly higher for the He/O2 plasma treated samples than for the He plasma treated counterparts, and the surface topography of the He/O2 plasma treated PE films displays evenly distributed dome-shaped small protuberances. Chemical composition analysis reveals that the He plasma treated samples have a higher oxygen content but a clearly lower percentage of COO than the comparable He/O2 treated samples, suggesting that differences exist in the mode of incorporating oxygen between the two gas condition plasma treatments. Electron spin resonance (ESR) results show that the free radical concentrations of the He plasma treated samples were clearly higher than those of the He/O2 plasma treated ones with other conditions unchanged. 展开更多
关键词 atmospheric pressure plasma jet PE film WETTABILITY free radicals plasma- polymer interactions
下载PDF
Optical Spectroscopic Investigation of Ar/CH_3OH and Ar/N_2/CH_3OH Atmospheric Pressure Plasma Jets
17
作者 周永杰 袁强华 +2 位作者 王晓敏 殷桂琴 董晨钟 《Plasma Science and Technology》 SCIE EI CAS CSCD 2014年第2期99-103,共5页
Ar/CH3OH and Ar/N2/CH3OH plasma jets were generated at atmospheric pressure by dual-frequency excitations. Two different cases were studied with focus laid on the generation of CN radicals. In one case Ar gas passed t... Ar/CH3OH and Ar/N2/CH3OH plasma jets were generated at atmospheric pressure by dual-frequency excitations. Two different cases were studied with focus laid on the generation of CN radicals. In one case Ar gas passed through a bubbler with saturated methanol steam but without addition of N2 (Ar/CH3OH plasma). In the other case N2 passed through the bubbler with saturated methanol steam (Ar/N2/CH3OH plasma). The optical emission lines of CN radicals have been observed in these two cases of plasma discharges. The addition of N2 can significantly increase the optical emission intensity of CN bands. 展开更多
关键词 atmospheric pressure plasma jet carbonaceous species optical emission spec- troscopy dual-frequency excitation
下载PDF
Atmospheric Pressure Plasma Jet in Organic Solution:Spectra,Degradation Effects of Solution Flow Rate and Initial pH Value
18
作者 陈秉岩 朱昌平 +5 位作者 陈龙威 费峻涛 高莹 文文 单鸣雷 任兆杏 《Plasma Science and Technology》 SCIE EI CAS CSCD 2014年第12期1126-1134,共9页
The organic compounds of p-nitrophenol (PNP) solution was treated by the active species generated in a stirred reactor by an atmospheric pressure plasma jet (APPJ). The emission intensities of hydroxyl (OH), oxy... The organic compounds of p-nitrophenol (PNP) solution was treated by the active species generated in a stirred reactor by an atmospheric pressure plasma jet (APPJ). The emission intensities of hydroxyl (OH), oxygen (O), nitric oxide (NO), hydrogen (H) and molecular (N2) were measured by optical emission spectroscopy (OES). The relations between the flow rates of the PNP solution and degradation, the degradation effects and initial pH value of the solution were also investigated. Experimental results show that there exist intense emissions of O (777.1 nm), N(337.1 nm), OH (306-310 nm) and NO band (200-290 nm) in the region of plasma. Given the treatment time and gas flow rate, the degradation increased as a function of discharge energy and solution flow rate, respectively. The solution flow rate for the most efficient degradation ranged from 1.414 m/s to 1.702 m/s, and contributed very little when it exceeded 2.199 m/s. This indicates the existence of diffusion-controlled reactions at a low solution flow rate and activation- controlled reactions at a high solution flow rate. Moreover, increasing or decreasing the initial pH value of neutral PNP solution (pH=5.95) could improve the degradation efficiency. Treated by APPJ, the PNP solutions with different initial pH values of 5.95, 7.47 and 2.78 turned more acidic in the end, while the neutral solution had the lowest degradation efficiency. This work clearly demonstrates the close coupling of active species, photolysis of ultraviolet, the organic solution flow rate and the initial pH value, and thus is helpful in the study of the mechanism and application of plasma in wastewater treatment. 展开更多
关键词 atmospheric pressure plasma jet active species organic solution degradation optical emission spectroscopy (OES)
下载PDF
Sterilization of mycete attached on the unearthed silk fabrics by an atmospheric pressure plasma jet
19
作者 Rui Zhang Jin-song Yu +5 位作者 Jun Huang Guang-liang Chen Xin Liu Wei Chen Xing-quan Wang Chao-rong Li 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第5期390-399,共10页
The sterilization of the simulated unearthed silk fabrics using an atmospheric pressure plasma jet(APPJ) system employing Ar/O2 or He/O2 plasma to inactivate the mycete attached on the silk fabrics is reported. The ... The sterilization of the simulated unearthed silk fabrics using an atmospheric pressure plasma jet(APPJ) system employing Ar/O2 or He/O2 plasma to inactivate the mycete attached on the silk fabrics is reported. The effects of the APPJ characteristics(particularly the gas type and discharge power) on the fabric strength, physical-chemical structures,and sterilizing efficiency were investigated. Experimental results showed that the Ar/O2 APPJ plasma can inactivate the mycete completely within 4.0 min under a discharge power of 50.0 W. Such an APPJ treatment had negligible impact on the mechanical strength of the fabric and the surface chemical characteristics. Moreover, the Ar ions, O and OH radicals were shown to play important roles on the sterilization of the mycete attached on the unearthed silk fabrics. 展开更多
关键词 unearthed silk fabric mycete sterilization atmospheric pressure plasma jet (APPJ) sterilization mechanism
下载PDF
A two-dimensional model of He/O_2 atmospheric pressure plasma needle discharge
20
作者 钱沐杨 杨从影 +4 位作者 陈小昌 刘三秋 晏雯 刘富成 王德真 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第12期412-421,共10页
In this paper, a computational modeling study of stream propagation in the atmospheric-pressure helium plasma in ambient atmosphere(oxygen) is presented. A coupled fluid model between time-dependent plasma dynamics ... In this paper, a computational modeling study of stream propagation in the atmospheric-pressure helium plasma in ambient atmosphere(oxygen) is presented. A coupled fluid model between time-dependent plasma dynamics and steady state neutral gas flow is employed to provide a fundamental insight into the evolution of the streamers. The obtained simulation results showing that the sheath forms near the dielectric surface and shields the axial stream propagation. The stream front propagates with axial velocity in a range of 10^4m/s–10^5m/s. And, the increasing accumulated surface charge should be responsible for reducing the propagation velocity of the streamer front in the axial direction. Besides, when the gas flow rate is 1.1 standard liter per minute(SLM), we find that the concentration of oxygen drastically increases at a larger radial position near a treated surface. Therefore, Penning ionization by helium metastables and oxygen peaks at an off-axis position, corresponding to the ring-shaped emission profile in cylindrical coordinates. In this case, the simulated results show the ring-shaped ground atomic oxygen density profile near the treated surface(z = 0.5 mm) at a large gas flow rate of 1.1 SLM, which is consistent with the observation in a similar experiment. 展开更多
关键词 atmospheric pressure plasma needle discharge streamer dynamics cathode sheath
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部