A mass of nanoparticles/nanorods were formed on a simultaneously deposited gran- ular film by plasma enhanced chemical vapor deposition (PECVD) of perfluorohexane at atmo- spheric pressure without any catalysts or t...A mass of nanoparticles/nanorods were formed on a simultaneously deposited gran- ular film by plasma enhanced chemical vapor deposition (PECVD) of perfluorohexane at atmo- spheric pressure without any catalysts or templates. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) were used to characterize the morphology and the chem- ical compositions of nanoparticles. The average size of particles is about 100 nm and the length of synthesized nanorods is between 1 μm and 2.5/tm. The analyses of transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction(SAED) and X-ray diffraction (XRD) reveals that the nanoparticles and nanorods are crystalline.展开更多
Abstract The gas phase nucleation process of anatase TiO2 in atmospheric non-thermal plasma enhanced chemical vapor deposition is studied. The particles synthesized in the plasma gas phase at different power density w...Abstract The gas phase nucleation process of anatase TiO2 in atmospheric non-thermal plasma enhanced chemical vapor deposition is studied. The particles synthesized in the plasma gas phase at different power density were collected outside of the reactor. The structure of the collected particles has been investigated by field scanning electron microscope (FESEM), X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED). The analysis shows that uniform crystalline nuclei with average size of several nanometers have been formed in the scale of micro second through this reactive atmo- spheric plasma gas process. The crystallinity of the nanoparticles increases with power density. The high density of crystalline nanonuclei in the plasma gas phase and the low gas temperature are beneficial to the fast deposition of the 3D porous anatase TiO2 film.展开更多
Ternary Ti-B-N coatings were synthesized on AISI 304 and Si wafer by plasma-enhanced chemical vapor deposition (PECVD) technique using a gaseous mixture of TiCl4,BCl3,H2,N2,and Ar.By virtue of X-ray diffraction analys...Ternary Ti-B-N coatings were synthesized on AISI 304 and Si wafer by plasma-enhanced chemical vapor deposition (PECVD) technique using a gaseous mixture of TiCl4,BCl3,H2,N2,and Ar.By virtue of X-ray diffraction analysis,X-ray photoelectron spectroscopy,scanning electron microscope,and high-resolution transmission electron microscope,the influences of B content on the microstructure and properties of Ti B N coatings were investigated systematically.The results indicated that the microstructure and mechanical properties of Ti-B-N coatings largely depend on the transformation from FCC-TiN phase to HCP-TiB2 phase.With increasing B content and decreasing N content in the coatings,the coating microstructure evolves gradually from FCC-TiN/a-BN to HCP-TiB2 /a-BN via FCC-TiN+HCP-TiB2/a-BN.The highest microhardness of about 34 GPa is achieved,which corresponds to the nanocomposite Ti-63%B-N (mole fraction) coating consisting of the HCP-TiB2 nano-crystallites and amorphous BN phase.The lowest friction-coefficient was observed for the nanocomposite Ti-41%B-N (mole fraction) coating consisting of the FCC-TiN nanocrystallites and amorphous BN展开更多
The effective parameters on the diameter of carbon nanotubes (CNTs) by plasma enhanced chemical vapor deposition (PECVD) were presented.Among lots of influential parameters,the effects of the catalytic film thickness ...The effective parameters on the diameter of carbon nanotubes (CNTs) by plasma enhanced chemical vapor deposition (PECVD) were presented.Among lots of influential parameters,the effects of the catalytic film thickness and the pretreatment plasma power on the growth of CNTs were investigated.The results show that the size of catalytic islands increases by increasing the thickness of catalytic layer,but the density of CNTs decreases.The pretreatment duration time of 30 s is the optimal condition for growing CNTs with about 50 nm in diameter.By increasing the pretreatment plasma power,the diameter of CNTs decreases gradually.However,the diameter of CNTs does not change drastically from 80 to 120 W.The uniformly grown CNTs with the diameter of 50 nm are obtained at the pretreatment plasma power of 100 W.展开更多
SiNx:H films with different N/Si ratios are synthesized by plasma-enhanced chemical vapor deposition (PECVD). Composition and structure characteristics are detected by Fourier transform infrared spectroscopy (FTIR...SiNx:H films with different N/Si ratios are synthesized by plasma-enhanced chemical vapor deposition (PECVD). Composition and structure characteristics are detected by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). It indicates that Si-N bonds increase with increased NH3/SiH4 ratio. Electrical property investigations by I-V measurements show that the prepared films offer higher resistivity and less leakage current with increased N/Si ratio and exhibit entirely insulating properties when N/Si ratio reaches 0.9, which is ascribed to increased Si-N bonds achieved.展开更多
The structural evolution and optical characterization of hydrogenated silicon(Si:H) thin films obtained by conventional radio frequency(RF) plasma enhanced chemical vapor deposition(PECVD) through decomposition of sil...The structural evolution and optical characterization of hydrogenated silicon(Si:H) thin films obtained by conventional radio frequency(RF) plasma enhanced chemical vapor deposition(PECVD) through decomposition of silane diluted with argon were studied by X-ray diffractometry(XRD),Fourier transform infrared(FTIR) spectroscopy,Raman spectroscopy,transmission electron microscopy(TEM),and ultraviolet and visible(UV-vis) spectroscopy,respectively.The influence of argon dilution on the optical properties of the thin films was also studied.It is found that argon as dilution gas plays a significant role in the growth of nano-crystal grains and amorphous network in Si:H thin films.The structural evolution of the thin films with different argon dilution ratios is observed and it is suggested that argon plasma leads to the nanocrystallization in the thin films during the deposition process.The nanocrystallization initiating at a relatively low dilution ratio is also observed.With the increase of argon portion in the mixed precursor gases,nano-crystal grains in the thin films evolve regularly.The structural evolution is explained by a proposed model based on the energy exchange between the argon plasma constituted with Ar* and Ar+ radicals and the growth regions of the thin films.It is observed that both the absorption of UV-vis light and the optical gap decrease with the increase of dilution ratio.展开更多
Atmospheric pressure plasma jet(APPJ)was used to clean nitrogen-containing carbon films(C–N)fabricated by plasma-assisted chemical vapor deposition method employing the plasma surface interaction linear device at Sic...Atmospheric pressure plasma jet(APPJ)was used to clean nitrogen-containing carbon films(C–N)fabricated by plasma-assisted chemical vapor deposition method employing the plasma surface interaction linear device at Sichuan University(SCU-PSI).The properties of the contaminated films on the surface of pristine and He-plasma pre-irradiated tungsten matrix,such as morphology,crystalline structure,element composition and chemical structure were characterized by scanning electron microscopy,grazing incidence x-ray diffraction and x-ray photoelectron spectroscopy.The experimental results revealed that the removal of C–N film with a thickness of tens of microns can be realized through APPJ cleaning regardless of the morphology of the substrates.Similar removal rates of 16.82 and 13.78μm min^(-1)were obtained for C–N films deposited on a smooth pristine W surface and rough fuzz-covered W surface,respectively.This is a remarkable improvement in comparison to the traditional cleaning method.However,slight surface oxidation was found after APPJ cleaning,but the degree of oxidation was acceptable with an oxidation depth increase of only 3.15 nm.Optical emission spectroscopy analysis and mass spectrometry analysis showed that C–N contamination was mainly removed through chemical reaction with reactive oxygen species during APPJ treatment using air as the working gas.These results make APPJ cleaning a potentially effective method for the rapid removal of C–N films from the wall surfaces of fusion devices.展开更多
Hydrogenated microcrystalline silicon (μc-Si:H) thin films were prepared by high- pressure radio-frequency (13.56 MHz) plasma enhanced chemical vapor deposition (rf-PECVD) with a screened plasma. The deposition rate ...Hydrogenated microcrystalline silicon (μc-Si:H) thin films were prepared by high- pressure radio-frequency (13.56 MHz) plasma enhanced chemical vapor deposition (rf-PECVD) with a screened plasma. The deposition rate and crystallinity varying with the deposition pressure, rf power, hydrogen dilution ratio and electrodes distance were systematically studied. By optimizing the deposition parameters the device quality μc-Si:H films have been achieved with a high deposition rate of 7.8 /s at a high pressure. The Voc of 560 mV and the FF of 0.70 have been achieved for a single-junction μc-Si:H p-i-n solar cell at a deposition rate of 7.8 /s.展开更多
Arc in vacuum is one of the important methods used to prepare carbon materials. However, the use of vacuum increases the cost of the arc method. This paper introduces an arc discharge device working at atmospheric pre...Arc in vacuum is one of the important methods used to prepare carbon materials. However, the use of vacuum increases the cost of the arc method. This paper introduces an arc discharge device working at atmospheric pressure. The current-limiting resistor, capacitor and inductor make the discharge gentle. The electrode temperature can be adjusted from 2040 K to 3673 K. Carbon nanofibres were prepared at the electrode temperature of 3645 K by using this device.展开更多
Titanium dioxide is coated on the surface of MCM-41 wafer through the plasma enhanced chemical vapor deposition (PECVD) method using titanium isopropoxide (TTIP) as a precursor. Annealing temperature is a key fact...Titanium dioxide is coated on the surface of MCM-41 wafer through the plasma enhanced chemical vapor deposition (PECVD) method using titanium isopropoxide (TTIP) as a precursor. Annealing temperature is a key factor affecting crystal phase of titanium dioxide. It will transform an amorphous structure to a polycrystalline structure by increasing temperature. The optimum anatase phase of TiO2 which can acquire the best methanol conversion under UV-light irradiation is obtained under an annealing temperature of 700℃ for 2 h, substrate tem- perature of 500~C, 70 mL. min1 of oxygen flow rate, and 100W of plasma power. In addition, the films are composed of an anatase-rutile mixed phase, and the ratio of anatase to rutile varies with substrate temperature and oxygen flow rate. The particle sizes of titanium dioxide are between 30.3 nm and 59.9nm by the calculation of Scherrer equation. Under the reaction conditions of ll6.8mg.L-1 methanol, 2.9mg.L-1 moisture, and 75~C of reaction temperature, the best conversion of methanol with UV-light is 48.2% by using the anatase-rutile (91.3/ 8.7) mixed phase TiO2 in a batch reactor for 60 min. While under fluorescent light irradiation, the best photoactivity appears by using the anatase-rutile (55.4/44.6) mixed phase TiO2 with a conversion of 40.0%.展开更多
类金刚石薄膜由于其独特的物理化学特性,使得该薄膜在光学、电学、机械、医学、航空航天等领域得到了广泛应用。等离子体增强化学气相沉积(plasma enhanced chemical vapor deposition,PECVD)制备类金刚石是近几十年兴起的新的制备类金...类金刚石薄膜由于其独特的物理化学特性,使得该薄膜在光学、电学、机械、医学、航空航天等领域得到了广泛应用。等离子体增强化学气相沉积(plasma enhanced chemical vapor deposition,PECVD)制备类金刚石是近几十年兴起的新的制备类金刚石薄膜的方法,因其对沉积温度要求低,对基底友好,同时还具有沉积速率快和无转移生长的优势,获得了越来越多的研究者关注。详细介绍了类金刚石薄膜优异的特性,阐述了在等离子化学气相沉积条件下,不同沉积条件对沉积类金刚石薄膜结构特性的影响。衬底的选择直接影响着沉积类金刚石薄膜的性能,不同的衬底直接决定着生成类金刚石结构中sp^(3)相的数量和质量;沉积参数是最为常见的控制条件,对沉积薄膜的总体效果影响也是最大的,改变沉积参数,沉积薄膜的表面将会变得更加光滑致密;常用的掺杂元素是硅和氮,掺杂元素的引入往往是为了降低沉积薄膜的内应力,提高与衬底间的结合力,延长使用寿命等;由于很难直接在金属上沉积类金刚石薄膜,所以常通过制备复合层来改善沉积效果。最后对类金刚石薄膜的发展以及今后研究方向进行了展望。展开更多
基金National Natural Science Foundation of China(No.50473003)
文摘A mass of nanoparticles/nanorods were formed on a simultaneously deposited gran- ular film by plasma enhanced chemical vapor deposition (PECVD) of perfluorohexane at atmo- spheric pressure without any catalysts or templates. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) were used to characterize the morphology and the chem- ical compositions of nanoparticles. The average size of particles is about 100 nm and the length of synthesized nanorods is between 1 μm and 2.5/tm. The analyses of transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction(SAED) and X-ray diffraction (XRD) reveals that the nanoparticles and nanorods are crystalline.
基金supported by National Natural Science Foundation of China(Nos.1083500410775031 and 11375042)+1 种基金Shanghai Municipal Committee of Science and Technology of China(10XD1400100)Outstanding Young Investigator Award(No.11005017)
文摘Abstract The gas phase nucleation process of anatase TiO2 in atmospheric non-thermal plasma enhanced chemical vapor deposition is studied. The particles synthesized in the plasma gas phase at different power density were collected outside of the reactor. The structure of the collected particles has been investigated by field scanning electron microscope (FESEM), X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED). The analysis shows that uniform crystalline nuclei with average size of several nanometers have been formed in the scale of micro second through this reactive atmo- spheric plasma gas process. The crystallinity of the nanoparticles increases with power density. The high density of crystalline nanonuclei in the plasma gas phase and the low gas temperature are beneficial to the fast deposition of the 3D porous anatase TiO2 film.
基金funded by a grant from the National Core Research Center(NCRC)Program through the National Research Foundation of Korea funded by the Ministry of Education,Science and Technology(No.2012-0000-957)by a grant from the Fundamental R&D Program for Core Technology of Materials funded by the Ministry of Knowledge Economy,Republic of Korea
文摘Ternary Ti-B-N coatings were synthesized on AISI 304 and Si wafer by plasma-enhanced chemical vapor deposition (PECVD) technique using a gaseous mixture of TiCl4,BCl3,H2,N2,and Ar.By virtue of X-ray diffraction analysis,X-ray photoelectron spectroscopy,scanning electron microscope,and high-resolution transmission electron microscope,the influences of B content on the microstructure and properties of Ti B N coatings were investigated systematically.The results indicated that the microstructure and mechanical properties of Ti-B-N coatings largely depend on the transformation from FCC-TiN phase to HCP-TiB2 phase.With increasing B content and decreasing N content in the coatings,the coating microstructure evolves gradually from FCC-TiN/a-BN to HCP-TiB2 /a-BN via FCC-TiN+HCP-TiB2/a-BN.The highest microhardness of about 34 GPa is achieved,which corresponds to the nanocomposite Ti-63%B-N (mole fraction) coating consisting of the HCP-TiB2 nano-crystallites and amorphous BN phase.The lowest friction-coefficient was observed for the nanocomposite Ti-41%B-N (mole fraction) coating consisting of the FCC-TiN nanocrystallites and amorphous BN
基金Project supported by a 2-Year Research Grant of Pusan National UniversityProject(2011-0006257)supported by National Core Research Center(NCRC)Program through the National Research Foundation of Korea funded by the Ministry of Education,Science and Technology
文摘The effective parameters on the diameter of carbon nanotubes (CNTs) by plasma enhanced chemical vapor deposition (PECVD) were presented.Among lots of influential parameters,the effects of the catalytic film thickness and the pretreatment plasma power on the growth of CNTs were investigated.The results show that the size of catalytic islands increases by increasing the thickness of catalytic layer,but the density of CNTs decreases.The pretreatment duration time of 30 s is the optimal condition for growing CNTs with about 50 nm in diameter.By increasing the pretreatment plasma power,the diameter of CNTs decreases gradually.However,the diameter of CNTs does not change drastically from 80 to 120 W.The uniformly grown CNTs with the diameter of 50 nm are obtained at the pretreatment plasma power of 100 W.
文摘SiNx:H films with different N/Si ratios are synthesized by plasma-enhanced chemical vapor deposition (PECVD). Composition and structure characteristics are detected by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). It indicates that Si-N bonds increase with increased NH3/SiH4 ratio. Electrical property investigations by I-V measurements show that the prepared films offer higher resistivity and less leakage current with increased N/Si ratio and exhibit entirely insulating properties when N/Si ratio reaches 0.9, which is ascribed to increased Si-N bonds achieved.
基金Project(60425101) supported by the National Outstanding Young Scientists Foundation of ChinaProject(06DZ0241) supported by the Science Foundation of General Armament Department of China
文摘The structural evolution and optical characterization of hydrogenated silicon(Si:H) thin films obtained by conventional radio frequency(RF) plasma enhanced chemical vapor deposition(PECVD) through decomposition of silane diluted with argon were studied by X-ray diffractometry(XRD),Fourier transform infrared(FTIR) spectroscopy,Raman spectroscopy,transmission electron microscopy(TEM),and ultraviolet and visible(UV-vis) spectroscopy,respectively.The influence of argon dilution on the optical properties of the thin films was also studied.It is found that argon as dilution gas plays a significant role in the growth of nano-crystal grains and amorphous network in Si:H thin films.The structural evolution of the thin films with different argon dilution ratios is observed and it is suggested that argon plasma leads to the nanocrystallization in the thin films during the deposition process.The nanocrystallization initiating at a relatively low dilution ratio is also observed.With the increase of argon portion in the mixed precursor gases,nano-crystal grains in the thin films evolve regularly.The structural evolution is explained by a proposed model based on the energy exchange between the argon plasma constituted with Ar* and Ar+ radicals and the growth regions of the thin films.It is observed that both the absorption of UV-vis light and the optical gap decrease with the increase of dilution ratio.
基金funded by National Key Research, Development Program of China (No. 2017YFE0301305KYWX-002)Sichuan Science and Technology Program (No. 2021YFSY0015)
文摘Atmospheric pressure plasma jet(APPJ)was used to clean nitrogen-containing carbon films(C–N)fabricated by plasma-assisted chemical vapor deposition method employing the plasma surface interaction linear device at Sichuan University(SCU-PSI).The properties of the contaminated films on the surface of pristine and He-plasma pre-irradiated tungsten matrix,such as morphology,crystalline structure,element composition and chemical structure were characterized by scanning electron microscopy,grazing incidence x-ray diffraction and x-ray photoelectron spectroscopy.The experimental results revealed that the removal of C–N film with a thickness of tens of microns can be realized through APPJ cleaning regardless of the morphology of the substrates.Similar removal rates of 16.82 and 13.78μm min^(-1)were obtained for C–N films deposited on a smooth pristine W surface and rough fuzz-covered W surface,respectively.This is a remarkable improvement in comparison to the traditional cleaning method.However,slight surface oxidation was found after APPJ cleaning,but the degree of oxidation was acceptable with an oxidation depth increase of only 3.15 nm.Optical emission spectroscopy analysis and mass spectrometry analysis showed that C–N contamination was mainly removed through chemical reaction with reactive oxygen species during APPJ treatment using air as the working gas.These results make APPJ cleaning a potentially effective method for the rapid removal of C–N films from the wall surfaces of fusion devices.
基金Supported by the National Natural Science Foundation of China (Grant No. 50662003)the State Development Program for Basic Research of China (Grant No. G2000028208)
文摘Hydrogenated microcrystalline silicon (μc-Si:H) thin films were prepared by high- pressure radio-frequency (13.56 MHz) plasma enhanced chemical vapor deposition (rf-PECVD) with a screened plasma. The deposition rate and crystallinity varying with the deposition pressure, rf power, hydrogen dilution ratio and electrodes distance were systematically studied. By optimizing the deposition parameters the device quality μc-Si:H films have been achieved with a high deposition rate of 7.8 /s at a high pressure. The Voc of 560 mV and the FF of 0.70 have been achieved for a single-junction μc-Si:H p-i-n solar cell at a deposition rate of 7.8 /s.
文摘Arc in vacuum is one of the important methods used to prepare carbon materials. However, the use of vacuum increases the cost of the arc method. This paper introduces an arc discharge device working at atmospheric pressure. The current-limiting resistor, capacitor and inductor make the discharge gentle. The electrode temperature can be adjusted from 2040 K to 3673 K. Carbon nanofibres were prepared at the electrode temperature of 3645 K by using this device.
文摘Titanium dioxide is coated on the surface of MCM-41 wafer through the plasma enhanced chemical vapor deposition (PECVD) method using titanium isopropoxide (TTIP) as a precursor. Annealing temperature is a key factor affecting crystal phase of titanium dioxide. It will transform an amorphous structure to a polycrystalline structure by increasing temperature. The optimum anatase phase of TiO2 which can acquire the best methanol conversion under UV-light irradiation is obtained under an annealing temperature of 700℃ for 2 h, substrate tem- perature of 500~C, 70 mL. min1 of oxygen flow rate, and 100W of plasma power. In addition, the films are composed of an anatase-rutile mixed phase, and the ratio of anatase to rutile varies with substrate temperature and oxygen flow rate. The particle sizes of titanium dioxide are between 30.3 nm and 59.9nm by the calculation of Scherrer equation. Under the reaction conditions of ll6.8mg.L-1 methanol, 2.9mg.L-1 moisture, and 75~C of reaction temperature, the best conversion of methanol with UV-light is 48.2% by using the anatase-rutile (91.3/ 8.7) mixed phase TiO2 in a batch reactor for 60 min. While under fluorescent light irradiation, the best photoactivity appears by using the anatase-rutile (55.4/44.6) mixed phase TiO2 with a conversion of 40.0%.
基金National Natural Science Foundation of China(No.52161040)Major Science and Technology Research and Development Project of Jiangxi Province(No.20203ABC28W006)+1 种基金Natural Science Foundation of Jiangxi Province,China,(No.20202ACBL214011)Key Project of"Science and Technology to Promote Mongolian Development",China(No.XM2021BT03)。
文摘类金刚石薄膜由于其独特的物理化学特性,使得该薄膜在光学、电学、机械、医学、航空航天等领域得到了广泛应用。等离子体增强化学气相沉积(plasma enhanced chemical vapor deposition,PECVD)制备类金刚石是近几十年兴起的新的制备类金刚石薄膜的方法,因其对沉积温度要求低,对基底友好,同时还具有沉积速率快和无转移生长的优势,获得了越来越多的研究者关注。详细介绍了类金刚石薄膜优异的特性,阐述了在等离子化学气相沉积条件下,不同沉积条件对沉积类金刚石薄膜结构特性的影响。衬底的选择直接影响着沉积类金刚石薄膜的性能,不同的衬底直接决定着生成类金刚石结构中sp^(3)相的数量和质量;沉积参数是最为常见的控制条件,对沉积薄膜的总体效果影响也是最大的,改变沉积参数,沉积薄膜的表面将会变得更加光滑致密;常用的掺杂元素是硅和氮,掺杂元素的引入往往是为了降低沉积薄膜的内应力,提高与衬底间的结合力,延长使用寿命等;由于很难直接在金属上沉积类金刚石薄膜,所以常通过制备复合层来改善沉积效果。最后对类金刚石薄膜的发展以及今后研究方向进行了展望。